

Gasentnahmesonden Serie SP®

SP2000, SP2000-H, SP2300-H, SP2400-H ab Seriennummer 10283

Betriebsanleitung Version 1.00.03

Sehr geehrter Kunde,

wir haben diese Bedienungsanleitung so aufgebaut, dass alle für das Produkt notwendigen Informationen schnell und einfach zu finden und zu verstehen sind.

Sollten trotzdem Fragen zu dem Produkt oder dessen Anwendung auftreten, zögern Sie nicht und wenden Sie sich direkt an **M&C** oder den für Sie zuständigen Vertragshändler. Entsprechende Kontaktadressen finden Sie im Anhang dieser Bedienungsanleitung.

Bitte nutzen Sie auch unsere Internetseite <u>www.mc-techgroup.com</u> für weitergehende Informationen zu unseren Produkten. Wir haben dort die Bedienungsanleitungen und Produktdatenblätter aller **M&C** – Produkte sowie weitere Informationen in Deutsch und Englisch für einen Download hinterlegt.

Diese Bedienungsanleitung erhebt keinen Anspruch auf Vollständigkeit und kann technischen Änderungen unterliegen.

© 11/2021 **M&C** Tech**Group** Germany GmbH. Reproduktion dieses Dokumentes oder seines Inhaltes ist nicht gestattet und bedarf der ausdrücklichen Genehmigung durch **M&C**.

SP* ist ein eingetragenes Warenzeichen. Version: 1.00.03

Inhalt

1	Allgemeine Hinweise	5
2	Konformitätserklärung	
3	Sicherheitshinweise	6
4	Garantie	6
5	Verwendete Begriffsbestimmungen und Signalzeichen	7
6	Vorwort	
7	Seriennummer	9
8	Technische Daten	10
9	Anwendung	11
10	Beschreibung	11
11	Sondenaufbau der beheizten Versionen	13
11.1	Messgasanschluss	
11.2	Temperaturregler	14
11.3	Entnahmerohr- und Vorfiltermöglichkeiten	14
12	Warenempfang und Lagerung	17
13	Vorbereitung zur Installation	17
14	Montage	18
14.1	Kontrolle des Filterelementes	
14.2	Montage der Anschlussverschraubung am Messgasausgang	20
14.3	Montage der Sonde mit Entnahmerohr oder Vorfilter	
14.4	Montage der Entnahmeleitung	23
14.5	Anschluss Option Prüfgasaufgabe- oder Rückspülleitung	24
14.6	Anschluss Option pneumatischer Antrieb MS1 oder MS3	25
15	Elektrischer Anschluss	25
15.1	Standardausführung mit internem Kapillarrohr-Thermostat	
15.2	Ausführung mit PT100 oder Thermoelement (optional)	
16	Inbetriebnahme	
16.1	Gasentnahmesonde SP2300-H:	
16.2	Option Prüfgasaufgabe bzw. Rückspülung	
	16.2.1 Option Rückschlagventil /R	
	16.2.2 Option 3/2-Wege-Kugelhahn /3VA und /3VA320	
16.3		
	16.3.1 Option Pneumatischer Antrieb MS1 oder MS3 bei Verwendung eines 2/2-Wege Kugelhah	31
	Option Pneumatischer Antrieb MS1 oder MS3 bei Verwendung eines 3/2-Wege-Kugelhał	
	16.3.3 Option Elektrischer Kugelhahnantrieb	33
16.4	Option Magnetventileinheiten für Rückspülung, Prüfgasaufgabe und Ansteuerung der pneumati:	schen
	Antriebe	
	16.4.1 Option Ansteuereinheit 234B für die Magnetventileinheiten	36
17	Wartung	
17.1	Filterelementwechsel und Kontrolle der Dichtungen	
17.2	Wechsel des optionalen Vorfilters	
17.3	Wechseln der Heizpatrone und des Thermostaten	
18	Ausserbetriebnahme	
19	Entsorgung	
20	Ersatzteillisten	
21	Anschluss- und Montagedaten	46
22	Anhang	47

Abbildungsverzeichnis

Abbildung 1	Aufbau der Basisversion SP2000-H	13
Abbildung 2	Montagemöglichkeiten SP2000, SP2300-H, SP2400-H	
Abbildung 3	Schnittzeichnung der Sonde SP2000-H	19
Abbildung 4	Demontage des Filtergehäusedeckels	20
Abbildung 5	Montage der Anschlussverschraubung am Messgasausgang	20
Abbildung 6	Montage Entnahmerohr oder Vorfilter	22
Abbildung 7	Anschluss der beheizten Leitung	23
Abbildung 8	Anschluss Prüfgas/Rückspülung	
Abbildung 9	Elektrischer Anschluss für SP2000-H, SP2300-H und SP2400-H mit Thermostatregler	26
Abbildung 10	Elektrischer Anschluss eines externen Temperaturreglers z.B. 70304G	27
Abbildung 11	Elektrischer Anschluss elektronischer Regler 70304G	28
Abbildung 12	Prüfgasaufgabe-Schema	30
Abbildung 13	Pneumatischer Antrieb für 2/2-Wege Kugelhahn	31
Abbildung 14	Pneumatischer Antrieb für 3/2-Wege Kugelhahn	
Abbildung 15	Elektrischer Anschluss für elektrischen Kugelhahnantrieb	33
Abbildung 16	Anschlüsse Magnetventileinheit 2	34
Abbildung 17	Anschlüsse Magnetventileinheit 3	35
Abbildung 18	Schaltplan der Steuereinheit 234B	38
Abbildung 19	Filterelemente und Dichtungen	40
Abbildung 20	Position von Thermostat und Heizpatrone	
Abbildung 21	Position der Befestigungsschrauben von Anschlussdose, Thermostatsensor- und	
	Heizpatronen-Aufnahmeplatte	43
Abbildung 22	Demontierte elektrische Anschlussdose mit Heizpatrone und Thermostatsensor	43
Abbildung 23	Einstellung des mechanischen Stopps am Thermostatregler	44
Abbildung 24	SP2000-H Basisausführung	48
Abbildung 25	SP2000-H mit Optionen	49
Abbildung 26	SP2300-H	50
Abbildung 27	SP2300-H Filterelemente	51
Abbildung 28	Hochtemperatur-Aluminiumoxydrohr AO	
Abbildung 29	Beheizte Entnahmerohre SP30-H	
Abbildung 30	Prüfgasaufgabe- und Rückspülmöglichkeiten	
Abbildung 31	SP2000-H/3VA/MS-NC-B	56
Abbildung 32	SP2000-H/3VA/MS-NC-C	
Abbildung 33	SP2000-H/3VA/MS-NO-B	
Abbildung 34	SP2000-H/3VA/MS-NO-C	59

Firmenzentrale

M&C Tech**Group** Germany GmbH ◆ Rehhecke 79 ◆ 40885 Ratingen ◆ Deutschland

Telefon: 02102 / 935 - 0 Fax: 02102 / 935 - 111

E - mail: info@mc-techgroup.com

www.mc-techgroup.com

1 ALLGEMEINE HINWEISE

Das in dieser Bedienungsanleitung beschriebene Produkt wurde in einem sicherheitstechnisch einwandfreien und geprüften Zustand ausgeliefert. Für den sicheren Betrieb und zur Erhaltung dieses Zustandes müssen die Hinweise und Vorschriften dieser Bedienungsanleitung befolgt werden. Weiterhin ist der sachgemäße Transport, die fachgerechte Lagerung und Aufstellung sowie sorgfältige Bedienung und Instandhaltung notwendig. Für den bestimmungsgemäßen Gebrauch dieses Produktes sind alle erforderlichen Informationen für das Fachpersonal in dieser Bedienungsanleitung enthalten.

2 KONFORMITÄTSERKLÄRUNG

CE - Kennzeichnung

Das in dieser Bedienungsanleitung beschriebene Produkt erfüllt die im Folgenden aufgeführten EU – Richtlinien.

EMV-Richtlinie

Es werden die Anforderungen der EU – Richtlinie 2014/30/EU "Elektromagnetische Verträglichkeit" erfüllt.

Niederspannungsrichtlinie

Es werden die Anforderungen der EU – Richtlinie 2014/35/EU "Niederspannungsrichtlinie" erfüllt. Die Einhaltung dieser EU – Richtlinie wurde geprüft nach DIN EN 61010.

Konformitätserklärung

Die EU –Konformitätserklärung steht auf der **M&C** – Homepage zum Download zur Verfügung oder kann direkt bei **M&C** angefordert werden.

3 SICHERHEITSHINWEISE

Bitte nachfolgende grundlegende Sicherheitsvorkehrungen bei Montage, Inbetriebnahme und Betrieb des Gerätes beachten:

Vor Inbetriebnahme und Gebrauch des Gerätes die Bedienungsanleitung lesen. Die in der Betriebsanleitung aufgeführten Hinweise und Warnungen sind zu befolgen.

Arbeiten an elektrotechnischen Geräten dürfen nur von Fachpersonal nach den zur Zeit gültigen Vorschriften ausgeführt werden.

Zu beachten sind die Forderungen der VDE 0100 bei der Errichtung von Starkstromanlagen mit Nennspannungen bis 1000V sowie Ihre relevanten Standards und Vorschriften.

Beim Anschluss des Gerätes auf die richtige Netzspannung gemäß Typenschildangaben achten.

Schutz vor Berührung unzulässig hoher elektrischer Spannungen: Vor dem Öffnen des Gerätes muss dieses spannungsfrei geschaltet werden. Dies gilt auch für eventuell angeschlossene externe Steuerkreise.

Das Gerät nur in zulässigen Temperatur- und Druckbereichen einsetzen.

Auf wettergeschützte Aufstellung achten. Weder Regen noch Flüssigkeiten direkt aussetzen.

Das Gerät darf <u>nicht</u> in explosionsgefährdeten Bereichen betrieben werden;

Installation, Wartung, Kontrolle und eventuelle Reparaturen sind nur von befugten Personen unter Beachtung der einschlägigen Bestimmungen auszuführen.

4 GARANTIE

Bei Ausfall des Gerätes wenden Sie sich bitte direkt an **M&C**, bzw. an Ihren **M&C**-Vertragshändler. Bei fachgerechter Anwendung übernehmen wir vom Tag der Lieferung an 1 Jahr Garantie gemäß unseren Verkaufsbedingungen. Verschleißteile sind hiervon ausgenommen. Die Garantieleistung umfasst die kostenlose Reparatur im Werk oder den kostenlosen Austausch des frei Verwendungsstelle eingesandten Gerätes. Rücklieferungen müssen in ausreichender und einwandfreier Schutzverpackung erfolgen.

5 VERWENDETE BEGRIFFSBESTIMMUNGEN UND SIGNALZEICHEN

Gefahr

bedeutet, dass Tod, schwere Körperverletzung und/oder erheblicher Sachschaden eintreten **werden**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Warnung

bedeutet, dass Tod, schwere Körperverletzung und/oder erheblicher Sachschaden eintreten **können**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht

bedeutet, dass eine leichte Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht

ohne Warndreieck bedeutet, dass ein Sachschaden eintreten **kann**, wenn die entsprechenden Maßnahmen nicht getroffen werden.

Achtung

bedeutet, dass ein unerwünschtes Ereignis oder ein unerwünschter Zustand eintreten **kann**, wenn der entsprechende Hinweis nicht beachtet wird.

Dies sind wichtige Informationen über das Produkt oder den entsprechenden Teil der Bedienungsanleitung, auf die in besonderem Maße aufmerksam gemacht werden soll.

Fachpersonal

Dies sind Personen, die mit der Aufstellung, der Inbetriebnahme, der Wartung sowie dem Betrieb des Produktes vertraut sind und über die notwendigen Qualifikationen durch Ausbildung oder Unterweisung verfügen.

Bedeutet "Warnung vor heißer Oberfläche".

Achtung, Verbrennungsgefahr! Nicht die Flächen berühren, vor denen dieses Warnzeichen warnt.

Elektrische Spannung!

Schützen Sie sich vor Kontakten mit unzulässig hohen elektrischen Spannungen.

Schutzhandschuhe benutzen!

Bei Arbeiten mit Chemikalien, scharfen Gegenständen oder extremen Temperaturen ist ein ausreichender Handschutz unvermeidbar.

Schutzbrille tragen!

Bedeutet, dass hier Gefahren für die Augen der Bedienperson oder von Umstehenden bestehen können. Dies können insbesondere mechanische oder chemische Gefahren sein, z.B. Partikel- oder Flüssigkeits-Spritzer. Bitte benutzen Sie geeignete Schutzbrille.

Schutzkleidung benutzen!

Bei Arbeiten mit Chemikalien, scharfen Gegenständen oder extremen Temperaturen ist ein ausreichender Körperschutz unvermeidbar.

6 VORWORT

Ein großes Problem bei der extraktiven kontinuierlichen Gasanalyse sind die im Gas enthaltenen Begleitstoffe wie z.B. Staub, Wasserdampf und auch Gaskomponenten, die mit kondensiertem Wasserdampf korrosive Säuren bilden.

Um eine wartungsfreundliche Messung zu realisieren, muss der Staub abgeschieden werden, ohne das Wasserdampf kondensiert. Hierdurch wird ein "verbacken" des Staubes mit dem Wasser und die eventuelle Säurenbildung verhindert. So wird ein Zusetzen von Filtern und angeschlossener Leitung verhindert und das mit dem Gas in Kontakt befindliche Sondenmaterial wird durch mögliche Säuren nicht angegriffen.

Die Lösung sind beheizte **M&C** Entnahmesonden wie z.B. Sonden der Serie **SP2000...** Diese Sonden garantieren bei richtiger Anpassung an die Prozessgegebenheiten minimalen Wartungsaufwand. Bei der kontinuierlichen Gasentnahme für analytische Messungen erfolgt mit **M&C** Entnahmesonden bereits unmittelbar am Entnahmepunkt eine Feinstaubfiltration. Hierdurch wird bereits ein Großteil der sonst notwendigen Wartungsarbeiten an einem Analysensystem vermieden.

Grundsätzlich sollte die entnommene Gasmenge auf ein notwendiges Minimum beschränkt werden, um ein Minimum an Wartungsarbeit und ein Maximum an Verfügbarkeit zu gewährleisten. Dies ist mittels einer nachgeschalteten optimierten Gasaufbereitung mit Komponenten von **M&C** möglich.

7 SERIENNUMMER

Die Typenschilder mit der Seriennummer befinden sich auf der Seite des elektrischen Anschlusskastens.

Bei Rückfragen und Ersatzteilbestellungen ist die Seriennummer des Gerätes immer anzugeben.

8 TECHNISCHE DATEN

Gasentnahmesonde Typ	SP2000	SP2000-H	SP2300-H	SP2400-H			
Artikelnummer	20S1000	20S2000	2053000	20S3500			
Wetterschutzhaube	Nein	Ja	Ja	Ja			
Schutzart Klemmkasten	IP 54 EN 60529						
Werkstoffe Filtergehäuse	Rostfreier Stahl 1.4571	/1.4404*	PTFE	Titan			
Dichtwerkstoffe	FKM* /7aT** = PTFE	-H320/C** = Graphi	İ.				
Material Sondenflanschdichtung	Novapress®						
Entnahmerohr/Vorfilter	optional						
Entnahmedruck max.	0,4-6 bar* abs., /7aT** = 25 bar abs.	*= 2 bar abs., /HP**	2 bar abs.	0,4-6 bar abs.			
Umgebungstemperatur	20 to +180 °C	-20 to +60 °C*; /PT100, /Fe-CuNi, /	Ni-CrNi** = -20 to +	-80 °C			
Filterraumvolumen	120 cm ³						
Filterfeinheit	S-2K150= Keramik*, 2 /F-3SS150= Edelstahl						
Thermostat, Temperatureinstellung		0-180 °C* -H320/0 CrNi**	E**= 0-320 °C /PT	100** /Fe-CuNi** /Ni-			
Betriebsbereitschaft		Nach 40 min -H3	20/C** = nach 60m	nin			
Untertemperatur-Alarmkontakt*		Schaltleistung: 250	V, 3A~, 0,25A= Sch	naltpunkt: ∆T 30°C			
Anschluss Gasausgang	1x 1/4" NPTi* Rohra -H320/C**= Rohransc	nschluss** ø 6, 8 ode hluss 6 mm oder 8 m					
Rückspül/Prüfgasanschluss	1/4" NPTi* /R**, -	H320/C**= Rohr ø 6	mm				
Netzversorgung		230 V 50/60 Hz, 80 cherung 10 A)	0 W /115 V** = 115	5 V 60 Hz, 800 W (Absi-			
Elektrischer Anschluss	Klemmen max. 4 mm², 2 x Kabelverschraubung M20 x 1,5						
Elektrischer Gerätestandard	EN 61010, EN 60519-1						
Montageflansch	DN 65 PN 6, Form B > DN oder ANSI möglich** /HP** = DN 50 PN 25						
Montageflanschmaterial	1.4571		PTFE	Titan			
Gewicht	7 kg*	15,4 kg*	15,4 kg*	14,5kg*			

^{* =} Standard

^{** =} Optional

Differenzdruck und T90-Einstellzeit bei verschiedenen Durchflüssen								
Δ P und T90 bei Durchfluss von	100	200	500	1000	1500	3000 (nur/HF)	NI/h	
ΔP bei neuem Filterelement S-2K 150/F-0,1GF150	0,007	0,011	0,020	0,058	0,135	0,240/0,225	bar	
Δ P bei neuem Filterelement F-3SS150	0,006	0,012	0,040	0,110	0,215	0,405	bar	
T90-Zeit ohne Entnahmerohr/Vorfilter-:	6,0	3,5	1,0	<0,5	<0,5	<0,5	S	

9 ANWENDUNG

Die **M&C**-Sonden des Typs **SP2000...**, **SP2300-H** und **SP2400-H** werden zur kontinuierlichen Gasentnahme bei Prozessen mit Staubbeladung, hoher Temperatur und/oder hoher Gasfeuchte eingesetzt.

10 BESCHREIBUNG

Die Konstruktion der Sonden ist ausgerichtet auf einfache Montage, sicheren Betrieb, problemlose Wartung und Vielseitigkeit in der Anwendung. Je nach Problemstellung werden verschiedene Entnahmerohre oder Vorfilter (siehe Datenblätter 2.14 und 2.17), die nicht zum Lieferumfang der Sonde gehören, in das Gewinde (G 3/4" i) im Montageflansch eingeschraubt.

Das großflächige Keramik-Tiefenfilterelement (auch Glasfaser- oder Glaswattefüllungen sind lieferbar) befindet sich in einem Gehäuse mit geringem Totvolumen außerhalb des Prozessraumes. Die Sonden sind so konstruiert, dass beim Filterelementwechsel keine Werkzeuge benötigt werden, die Entnahmeleitung nicht demontiert werden muss und eine Verunreinigung der Reingasseite ausgeschlossen ist. Reinigung bzw. Rückspülung des Entnahmerohres ist von außen möglich.

Durch die spezielle Ausführung des Heizelements bei der **SP2000-H**, **SP2300-H** und **SP2400-H** (mit Schutzhaube) wird das gesamte Filtergehäuse inkl. Montageflansch einstellbar bis 180 °C beheizt (Version **-H320/C** bis 320 °C), sodass ein sicherer Betrieb ohne Taupunktunterschreitung im prozessexternen Bereich gewährleistet ist. Die Temperaturregelung erfolgt bei der Standardausführung durch einen integrierten Kapillarfühler-Thermostat mit Übertemperaturbegrenzer und Alarmfunktion bei Untertemperatur in kompakter Anordnung. Prüfgasaufgabe und Vergleichsentnahme sind an der Sonde möglich.

Je nach Gaszusammensetzung kann es möglich sein, dass das Standardmaterial des Sondenkörpers (rostfreier Stahl 1.4404) nicht ausreichend korrosionsbeständig ist. Für diesen Fall gibt es die **SP2300-H** aus PTFE oder alternativ für eine Beheizung über 180 °C die **SP2400-H** aus Titan.

Folgende Filterelemente stehen zur Auswahl:

Filterelemente	Тур	Filterfeinheit	Werkstoff
Filterelement	S-2K 150	2 μm	Keramik*
Filterelement	S-3G 150	3 μm	Glas
Filterelement	S-3SS 150	3 μm	Rostfr. Stahl 1.4401
Filterelement	S-0,1GF 150	0,1 μm	Glasfaser
Filterelement	FW		Glaswatte

^{* =} Standard

Folgende Dichtungsmaterialien werden eingesetzt:

Material	Тур	Max. Temperatur
Viton	Standard	max. 180 °C
PTFE	Typ /7aT	max. 180 °C
Graphit	Typ -H320/C	max. 320 °C

Folgende Arten der Filterteilbeheizung und Regelung sind möglich:

Тур	Ausführung
-H	Elektrische Beheizung und Regelung mit internem Kapillarrohr-Thermostat*
/PT100 /Fe-CuNi /Ni-CrNi	Elektrische Beheizung und Regelung mit externem elektronischem Temperaturregler
/D	Dampfbeheizung, ungeregelt

^{* =} Standard

11 SONDENAUFBAU DER BEHEIZTEN VERSIONEN

Eine komplette Gasentnahmesonde setzt sich aus dem beheizten Filterteil und einem Entnahmerohr oder Vorfilter zusammen. Der Filteraufnahmeteil mit dem allseitigen Heizungsmantel ① bildet mit dem Standard-Montageflansch DN65 PN6 ② und der seitlich angebauten elektrischen Anschlussdose ③ eine Einheit. Auf dem am Montageflansch montierten Winkelblech aus rostfreiem Stahl ④ ist die wärmeisolierte Abdeckhaube ⑤ aufgesetzt und mit 2 Spannklammern befestigt. Die Abdeckhaube bewirkt eine gleichmäßige Wärmeverteilung über den Sondenheizkörper und dient gleichzeitig als Wetter- und Berührungsschutz.

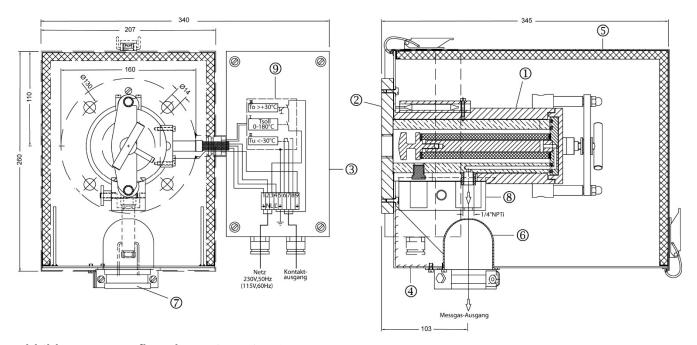


Abbildung 1 Aufbau der Basisversion SP2000-H

11.1 MESSGASANSCHLUSS

An der Öffnung der Unterseite des Winkelbleches, welche mit einer Silikonkappe © verschlossen ist, befindet sich die Montageschelle ② für die Befestigung von beheizten **M&C** -Entnahmeleitungen mit Außendurchmessern von 40 bis max. 50 mm. Die Schelle ist auf einem verschiebbaren Montagewinkel montiert, welcher eine Anpassung an verschiedene Entnahmeleitungs-Durchmesser ermöglicht.

Der Messgasausgang hat ein 1/4"-NPT-Innengewinde. In dieses wird kundenseitig für den Anschluss der Entnahmeleitung eine entsprechend den Schlauch/Rohrmaßen dimensionierte und temperaturfeste Rohrverschraubung z.B. aus Edelstahl, gasdicht eingeschraubt. Passende Rohrverschraubungen sind von **M&C** lieferbar. Bei der Hochtemperatur-Ausführung **-H320/C** ist der Messgas-Ausgangsanschluss mit einem fest eingeschweißten 6 mm Rohrstutzen zur Aufnahme eines im Lieferumfang befindlichen Verbinders für 6mm (optional 8mm) Rohr versehen.

Der Messgas-Ausgangsanschluss wird nach erfolgter Montage von Rohrverschraubung und Entnahmeleitung mit speziellen Wärmeleitbacken ® umschlossen, um Temperatur- und damit Taupunktunterschreitungen in den kritischen Anschlussbereichen zu vermeiden. Die Größe der Wärmeleitbacken lässt die Verwendung von Anschlussverschraubungen bis max. 10mm-Rohraußendurchmesser zu.

11.2 TEMPERATURREGLER

In der Standard-Ausführung **-H** oder mit Option **-H320/C** erfolgt die Temperaturregelung mit dem in der Anschlussdose eingebauten Kapillarrohrthermostat ®, dessen Regelbereich 0 bis 180 °C (**-H**) bzw. 0 bis 320 °C (**-H320/C**) beträgt. Die Sollwerteinstellung kann bis max. 180 bzw. 320 °C erfolgen. Der Thermostat hat einen Übertemperaturbegrenzer, welcher automatisch bei Überschreiten der eingestellten Sollwerttemperatur um 30 °C die Beheizung dauerhaft abschaltet. Das Wiedereinschalten erfolgt durch Betätigung des grünen RESET-Knopfes**,** welcher sich unter der Öffnung im Montageblech des Thermostats befindet.

Für die Temperaturüberwachung besitzt der Thermostat einen Untertemperaturalarm, welcher bei Unterschreiten der Sollwerttemperatur um 30 °C einen Kontakt betätigt. Dieser Status-Alarm steht an der Klemmleiste als potentialfreier Umschaltkontakt zur Verfügung.

Soll die Regelung mit externem elektronischen Regler erfolgen, ist als Temperatursensor entweder ein Widerstandsthermometer PT100 (Einbau von max. 2 Stücken möglich), ein Thermoelement Fe-CuNi oder ein Thermoelement Ni-CrNi vorgesehen. **M&C** liefert entsprechend geeigneter Temperaturregler, z.B. Typ **70304G** (siehe Datenblatt 4.3), welcher auch direkt an der Gasentnahmesonde montiert werden kann (max. Umgebungstemperatur +45 °C).

11.3 ENTNAHMEROHR- UND VORFILTERMÖGLICHKEITEN

Je nach Prozessgastemperatur und -zusammensetzung kommen Entnahmerohre unterschiedlicher Werkstoffe mit G 3/4"-Anschluss zum Einsatz.

Entnahmerohr Typ	Artikel- Nr.	Temperatur max. °C	Werkstoff Rohr / Anschlussteil	Länge 1) mm	Länge max. mm	Rohr ø a/i "d1" mm
SP2000/PV	20S9070	90	PVDF/ PTFE-GV	1000	1500	25/21
SP32**	2059280	90	PVDF/ PTFE-GV	800	800	50/44
SP2000/T	20S9083	160	PTFE/ PTFE-GV	500	500	25/15
SP2000/Ti	20S9075	400	Titan	1000	2500	25/22
SP210/SS	02S9200	600	rostfr. Stahl 1.4571	1000	2000	12/10
SP2000/SS	20S9065	600	rostfr. Stahl 1.4571	1000	2500	25/22
SP2000/SS-Vm	20S9067	600	rostfr. Stahl 1.4571	1000	2500	25/06
SP2000/HC	2059090	900	Hastelloy® C4	1000	2500	25/22
SP2000/KA	20S9080	1300	Kanthal* / 1.4571	1000	1500	27/20
SP2000/IN	20S9077	1100	Inconel®	1000	2000	25/22
SP2000/CR-2*	20S9098	1400	Cr AL ₂ O ₃ / Hastelloy® C4	900	900	22,5/13
SP2000/CR-20*	20S9099	1400	Cr AL ₂ O ₃ / Hastelloy® C4	1200	1200	22,5/13
SP2000/AO ohne Anschluss- teil/Adapter	20S9385	1800	Aluminiumoxyd ²⁾ /	1000	1500	24/18

Entnahmerohr Typ	Artikel- Nr.	Temperatur max. °C	Werkstoff Rohr / Anschlussteil	Länge ¹⁾ mm	Länge max. mm	Rohr ø a/i "d1" mm
Adapter für SP2000/AO	20S9395	(600)	/ rostfr. Stahl 1.4571			
Adapter für SP2000/AO	20S9397	(900)	/ Hastelloy® C4			

^{*} Entnahmerohr mit Anschluss-Stützadapter. Einsatztemperatur im Stützadapterbereich beträgt auf ca. 200 mm Länge werkstoffspezifisch 600/900 °C.

Weitere Informationen zu Entnahmerohren siehe Datenblatt 2.14

Zur Vermeidung von Kondensation zwischen dem Entnahmepunkt und der beheizten Gasentnahmesonde oder bei Kondensation im Bereich des Entnahmestutzens kommen beheizte Entnahmerohre aus rostfr. Stahl mit Flanschanschluss DN65 PN6 zum Einsatz.

Тур	Max. Prozesstemperatur	Länge max.	Rohr a.d.	Temperaturfühler
SP-30H1.1, Beheizung max. 320°C	bis max. 550 °C	2,0 m *	ø 42,2mm	Fe-CuNi
SP-30H1.1V, Beheizung max. 320°C	bis max. 550 °C	2,0 m *	ø 42,2mm	Fe-CuNi
SP30-H2, Beheizung max. 320°C	bis max. 550 °C	2,0 m *	ø 42,2mm	PT100
SP35-H1.1, Beheizung max. 320°C	bis max. 550 °C	0,175 m	ø 42,2mm	Fe-CuNi
SP35-H2, Beheizung max. 320°C	bis max. 550 °C	0,175 m	ø 42,2mm	PT100

^{* =} Standard

Weitere Informationen zu beheizten Entnahmerohren siehe Datenblatt 2.15

Bei hoher Staubbeladung der Prozessgase empfehlen wir zur Standzeiterhöhung unbedingt den Einsatz eines Vorfilters, der je nach Anforderung an die Ansprechgeschwindigkeit mit oder ohne Volumenverdränger geliefert wird. Diese Vorfilter können direkt in den Sondenflansch oder über Verlängerungsrohre mit Volumenverdränger eingeschraubt werden.

^{**} Für Gasentnahme hinter Nasswäschern zur Tröpfchenabscheidung

¹⁾ Standard

²⁾ Bitte die Materialeigenschaften von Keramik bei hohen und wechselnden Temperaturen beachten! Andere Werkstoffe oder Ausführungen auf Anfrage.

Folgende Vorfilter stehen zur Auswahl:

Vorfilter Typ	Artikel-Nr.	Temp. max. °C	Werkstoff Filter / An- schluss	Filter- feinheit µm	Stau- banteil g/m³	Innerer Volumen- verdränger	Länge mm	Filter ø mm	Anschluss
SP2000/20SS 150	20S9160	600	1.4401/1.4571	20	2-10		150	31	ø 25
SP2000/V20	20S9085	600	1.4401/1.4571	2	2-10		220	46	G 3/4" a
SP2000/V20-0	20S9105	600	1.4401/1.4571	2	2-10	Χ	220	46	G 3/4" a
SP2000/V20/HC	20S9095	900	Hastelloy®-C	2	2-10		220	46	G 3/4" a
SP2000/V20-0/HC	20S9115	900	Hastelloy®-C	2	2-10	Χ	220	46	G 3/4" a
SP2000/V20-T	20S9315	200	PTFE / 1.4571	3	> 10		400	65	G 3/4" a
SP2000/V20-2	20S9125	600	1.4401/1.4571	2	> 10		520	60	G 3/4" a
SP2000/V20-1	20S9145	600	1.4401/1.4571	2	> 10	Χ	520	60	G 3/4" a
SP2000/V20-2/HC	20S9135	900	Hastelloy®-C	2	> 10		520	60	G 3/4" a
SP2000/V20-1/HC	20S9155	900	Hastelloy®-C	2	> 10	Χ	520	60	G 3/4" a
SP2000/V20-4 ¹⁾	20S9290	600	1.4401/1.4571	2	2-10		1) 300	31	G 3/4" a
SP2000/V20-3 ¹⁾	20S9300	600	1.4401/1.4571	2	2-10	Χ	1) 300	31	G 3/4" a
SP2000/V20-5	20S9127	500	1.4401/1.4571	3	2-10		220	50	G 3/4" a
SP2000/V20-6	20S9128	500	1.4401/1.4571	3	> 10		520	60	G 3/4" a
SP2000/V12-1	20S9500	1000	Keramik ⁵⁾ / 1.4571	1	> 10		500	40	DN 65 PN 6
SP2000/V12-3	20S9510	1000	Keramik ⁵⁾ / 1.4571	1	> 10	optional	1000	60	DN 65 PN 6
SP2000/V12-2	20S9505	1000	Keramik ⁵⁾ / 1.4571	2	> 10	optional	1000	60	DN 65 PN 6
SP2000/V12-1/SS ²⁾	20S9525	600	Keramik ⁵⁾ / 1.4571	1	> 10		500	40	DN 65 PN 6
SP2000/V12-3/SS ³⁾	20S9535	600	Keramik ⁵⁾ / 1.4571	1	> 10	optional	1000	60	DN 100 PN 6
SP2000/V12-2/SS ³⁾	20S9530	600	Keramik ⁵⁾ / 1.4571	2	> 10	optional	1000	60	DN 100 PN 6
SP2000/V12-1/IC ²⁾	20S9540	1000	Keramik ⁵⁾ / Incoloy® - 1.4571	1	> 10		500	40	DN 65 PN 6
SP2000/V12-3/IC ³⁾	20S9550	1000	Keramik ⁵⁾ / Incoloy® - 1.4571	1	> 10	optional	1000	60	DN 100 PN 6
SP2000/V12-2/IC ³⁾	20S9545	1000	Keramik ⁵⁾ / Incoloy® - 1.4571	2	> 10	optional	1000	60	DN 100 PN 6

¹⁾ Vorfilter V20-3, V20-4 optional bis 1000 mm Länge lieferbar.

Weitere Informationen zu Vorfiltern siehe Datenblatt 2.17

²⁾ Mit Schutzrohr V12-1.

³⁾ Mit Schutzrohr V12-2/3.

⁴⁾ Vorfilter mit besonderem Aufbau für effiziente Rückspülbarkeit. ⁵⁾ Bitte die Materialeigenschaften von Keramik bei hohen und wechselnden Temperaturen beachten!

12 WARENEMPFANG UND LAGERUNG

- Die Sonde und eventuelles Sonderzubehör sofort nach Erhalt vorsichtig aus der Versandverpackung herausnehmen und Lieferumfang gemäß Lieferschein überprüfen;
- Ware auf eventuelle Transportschäden überprüfen und, falls notwendig, Ihren Transportversicherer unmittelbar über vorliegende Schäden informieren;

Die Gasentnahmesonde wird üblicherweise in 2 Verpackungseinheiten geliefert:

- 1. Gasentnahmesonde mit den erforderlichen Befestigungsschrauben, Muttern und Flanschdichtung.
- 2. Entnahmerohr oder Vorfilter eventuell mit Verlängerungsrohr.

Die Lagerung der Sonde sollte in einem geschützten frostfreien Raum erfolgen!

13 VORBEREITUNG ZUR INSTALLATION

- Gemäß den allgemein gültigen Richtlinien den optimalen Entnahmepunkt auswählen, bzw. mit den zuständigen Stellen abstimmen.
- Den Entnahmepunkt so platzieren, dass ausreichender Raum für den Ein- und Ausbau der Sonde möglich ist und hierbei auch an die Einstecklänge des Entnahmerohres denken.
- Auf gute Zugänglichkeit der Sonde achten, damit die später notwendigen Wartungsarbeiten problemlos durchgeführt werden können.
- Den bauseitigen Entnahmestutzen nach Möglichkeit so auslegen, dass die Temperatur des Stutzens immer oberhalb des Säuretaupunktes ist, um Korrosions- und Verstopfungsprobleme zu vermeiden. Falls das nicht möglich ist, wird bei kalten Stutzen ein beheiztes Entnahmerohr **SP35/SP30** empfohlen.
- Falls die Umgebungstemperatur im Stutzenbereich durch Strahlungswärme > 80 °C ist, muss zum Schutz der Sonde bauseitig ein Wärmestrahl-Reflexionsblech montiert werden.
- Der Montage-Flanschanschluss des Stutzens sollte DN65 PN6 sein. Bei anderen gewünschten Anschlussdimensionen kann optional ein spezieller Adapterzwischenflansch /SO10 geliefert werden. Anstelle einer
 Flanschstutzenmontage kann die Sonde auch mit einem lieferbaren R2"-Anschlussadapter an einen entsprechenden Gewindemuffenstutzen montiert werden. Die notwendige minimale Flanschgröße bzw. der
 minimale Stutzendurchmesser ergibt sich aus dem Außendurchmesser der verwendeten Entnahmerohre
 oder Vorfilter.

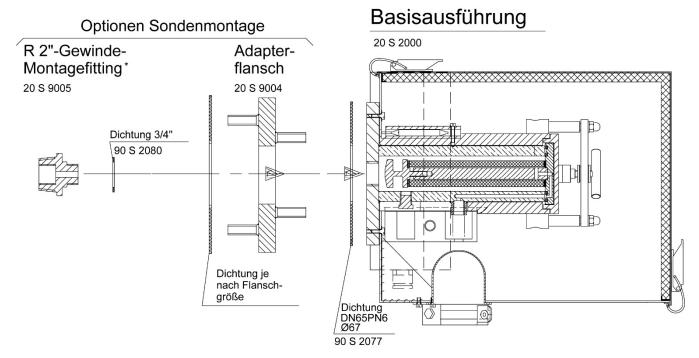
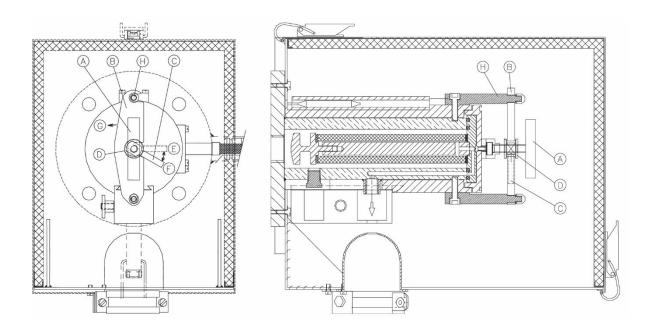


Abbildung 2 Montagemöglichkeiten SP2000..., SP2300-H, SP2400-H

Die zu montierende Sonde muss an die vorhandenen Betriebsbedingungen angepasst sein.

Die vorhandenen Betriebsparameter sind daher vor Montagebeginn entsprechend zu prüfen:


Unter-Überdrucksituation	mbar	bar	
Prozesstemperatur	°C, Min.	°C Max.	
Staubbeladung	g/m³		
Staubzusammensetzung - Korngröße	μm		
Gaszusammensetzung	korrosiv	toxisch	explosiv
Welche Parameter sollen gemessen werden, z.B. O ₂ , CO, SO ₂ , NOX,,	Vol.%	mg/Nm³	ppm
Erforderliche Gasmenge	l/h, Min.	l/h, Max.	
Notwendige T90-Zeit	S		

14 MONTAGE

Die **M&C** Sonden **SP2000** sind für den stationären Einsatz entwickelt und bei fachgerechter Auswahl und Montage garantieren sie eine lange Funktionsfähigkeit und ein Minimum an Wartung. Empfohlen wird eine horizontale Betriebslage mit ca. 10° Neigung zum Prozess.

14.1 KONTROLLE DES FILTERELEMENTES

Vor Inbetriebnahme muss das Filterelement auf festen Sitz geprüft werden.

Abbildung 3 Schnittzeichnung der Sonde SP2000-H

Ein Herausnehmen des Filtergehäusedeckels zur Überprüfung oder zum Austausch des Filterelementes ist wie folgt durchzuführen:

- Schutzhaube durch Öffnen der 2 Spannklammern abnehmen;
- Knebelgriff A ca. 1 Umdrehung nach links drehen, sodass der Deckel angehoben wird;
- Handgriff **C** in Position **E** stellen;
- Spannbügel **B** nach links wegschwenken in Richtung **G**;
- Mit dem Knebelgriff A den Filtergehäusedeckel herausziehen;
- Filterelementsitz an der Filterandruckschraube überprüfen und diese wenn nötig handfest nachziehen oder für einen Filterelementwechsel das Filterelement und ev. dazugehörige Dichtungen auswechseln;

Warnung!

Bei Arbeiten während des Betriebes:

Hohe Oberflächentemperaturen!

Das Berühren kann zu Verbrennungen führen.

Schutzhandschuhe tragen und Sonde gegen unbefugten Zugriff sichern!

- Filtergehäusedeckel wieder in den Filterraum einschieben;
- Spannbügel **B** nach rechts schwenken und mit dem Handgriff **C** die Ringschraube **D** in Position **E** bringen, dass der Spannbügel in die Ringschraube **D** und den Gewindebolzen **H** einrastet. Hierzu wenn notwendig die Position der Ringschraube **D** durch Drehen auf der Gewindestange verändern;
- Danach Handgriff **C** in Position **F** drehen und den Knebelgriff **A** durch Rechtsdrehen handfest anziehen.

Die Bilderfolge soll die oben aufgeführten Schritte verdeutlichen.

Abbildung 4 Demontage des Filtergehäusedeckels

14.2 MONTAGE DER ANSCHLUSSVERSCHRAUBUNG AM MESSGASAUSGANG

• Die Wärmeleitbacken ① am Messgas-Ausgang nach Lösen der Rändelschraube ② entfernen.

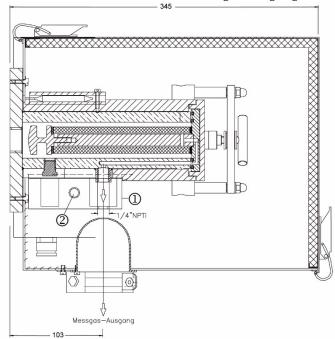


Abbildung 5 Montage der Anschlussverschraubung am Messgasausgang

- Für den Anschluss der Entnahmeleitung eine entsprechend dimensionierte Rohrverschraubung mit Anschlussgewinde ¼"-NPT a mittels PTFE-Dichtungsband einschrauben.
- Bei Option 2-ter Messgasausgang **SP2000/2x** sind entsprechend zwei Rohrverschraubungen mit Anschlussgewinde ¼"-NPTa einzuschrauben.
- Bei Option Hochbeheizung -**H320/C** ist ein 6mm Rohrstutzen eingeschweißt und ein Rohrverbinder für 6 mm (optional 8 mm) Rohranschluss mitgeliefert.
- Wärmeleitbacken wieder anbauen und Rändelmutter festziehen.

Achtung Auf Dichtigkeit der Rohrverschraubungen achten!

Vorsicht! Sonde nie ohne Wärmeleitbacken betreiben, da durch entstehende Kältebrücke mit Ver-

stopfung der Verschraubung und Leitung zu rechnen ist!

14.3 MONTAGE DER SONDE MIT ENTNAHMEROHR ODER VORFILTER

Grundsätzlich ist es von Vorteil, wenn die Sonde mit einer geringen Neigung nach unten in den Prozess eingebaut wird. Diese Einbaulage ist bei Verwendung des Entnahmerohrtyps **SP32** zur Entnahme z.B. hinter Nasswäschern zwingend erforderlich, damit abgeschiedene Tröpfchen in den Prozess zurückfließen können.

Eine bevorzugte Einbaulage ist die Montage der Sonde mit dem Messgas-Ausgang nach unten. Für eine einwandfreie Funktion ist dies jedoch nicht unbedingt erforderlich.

- Flanschdichtung ① (Abb. 6) zwischen Entnahmeflansch und Sondenflansch legen.
- Wird das beheizte Entnahmerohr Typ **SP30/35** oder der Keramik-Vorfilter Typ **V12** verwendet, ist die Sonde mit dessen Flansch ② (Abb. 6) (mit eingeschweißten Gewindebolzen) zu verschrauben. Vorher Flanschdichtung zwischen beide Flansche legen.
- Entspricht der Flansch am Entnahmestutzen nicht dem Standard Flanschanschluss DN65 PN6, so ist der optional mitgelieferte Adapterflansch (Abb. 2 u. 6) in gleicher Weise an der Sonde zu montieren.
- Bei der Hochdruckversion /HP ist standardmäßig ein Flansch DN50 PN25 vorhanden
- Das Entnahmerohr oder den Vorfilter ③ (Abb. 6) mit Gewinde G3/4"a direkt oder mit einem Verlängerungsrohr ④ und der ¾"-Flachdichtung in das G3/4"-Innengewinde im Flansch der Sonde einschrauben und festziehen.
- Entnahmerohr bzw. Vorfilter der kompletten Sondeneinheit in den Entnahmestutzen einführen und die Sonde mit den mitgelieferten Schrauben, Federringen und Muttern am Entnahmestutzen verschrauben.

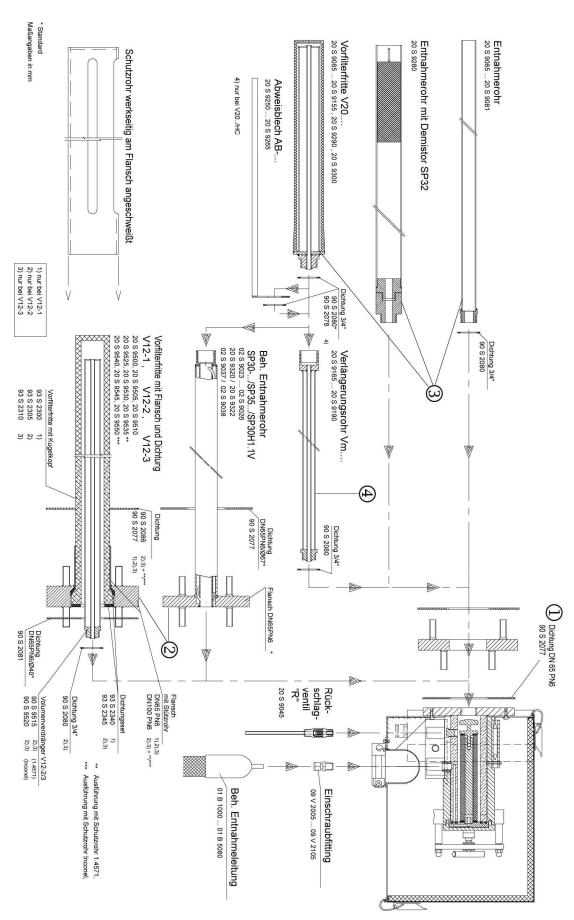


Abbildung 6 Montage Entnahmerohr oder Vorfilter

14.4 MONTAGE DER ENTNAHMELEITUNG

- Die Entnahmeleitungs-Befestigungsschelle ① öffnen.
- Das Endstück der Entnahmeleitung ② in die Silikonkappe ③ im Bodenteil des Winkelbleches einschieben.
- Je nach Leitungstyp den Edelstahlstutzen mit oder ohne PTFE-Seele ④ durch die Bohrung in der Silikonkappe ⑤ stecken.

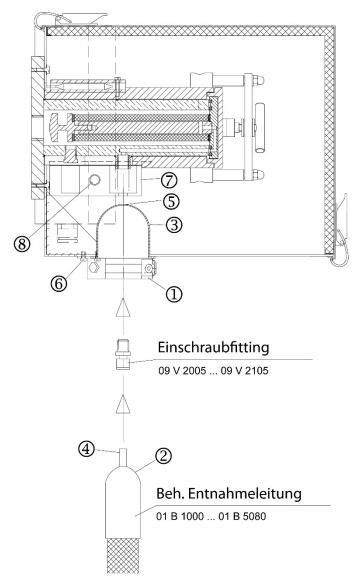


Abbildung 7 Anschluss der beheizten Leitung

• Den Edelstahlstutzen oder die austauschbare PTFE-Seele ④ an der Verschraubung im Messgasausgang der Sonde anschließen. Dazu Überwurfmutter mit Klemm- und Schneidring der Verschraubung entfernen und in richtiger Reihenfolge und Richtung auf den Edelstahlstutzen oder die PTFE-Seele der beheizten Leitung stecken.

Achtung

Wenn als Entnahmeleitung ein flexibler Schlauch z.B. PTFE-Schlauch verwendet wird, muss unbedingt eine Stützhülse in das Schlauchende eingesteckt werden, um ein Zusammendrücken des Schlauchendes zu vermeiden.

- Rohrstutzen oder Schlauchende in die Verschraubung im Messgasausgang der Sonde stecken und die Überwurfmutter fingerfest anziehen.
- Die von **M&C** optional gelieferten temperaturfesten Anschlussverschraubungen aus rostfr. Stahl haben zur sicheren Abdichtung ein Doppelschneidringsystem. Die Muttern dieser Rohrverschraubungen werden nach fingerfestem Anzug mit einem Flachschlüssel exakt 1 1/4 Umdrehung angezogen und sind dann richtig montiert.
- Entnahmeleitungs-Befestigungsschelle ① wieder schließen. Bei größeren Außendurchmessern der Entnahmeleitung kann es für die zentrale Montage erforderlich sein, den kleinen Montagewinkel ⑥ der Befestigungsschelle nach Lösen der zwei Schrauben entsprechend zu verschieben und wieder festzuschrauben.
- Wärmeleitbacken ② seitlich um den Messgasanschluss in die Nutführung legen und mit der Rändelmutter ® festziehen.

Vorsicht!

Sonde nie ohne Wärmeleitbacken betreiben, da durch entstehende Kältebrücke mit Verstopfung der Verschraubung und Leitung zu rechnen ist!

14.5 ANSCHLUSS OPTION PRÜFGASAUFGABE- ODER RÜCKSPÜLLEITUNG

• Bei Rückschlagventil Option /R ① oder 3-Wege-Kugelhahn Option /3VA oder /3VA320 im Sondeneingang ② zur Prüfgasaufgabe bzw. Rückspülung die entsprechende Rohrleitung am 6 mm-Rohrstutzen ③ unterhalb des Sondengehäuses mit Hilfe eines entsprechenden Rohrverbinders anschließen.

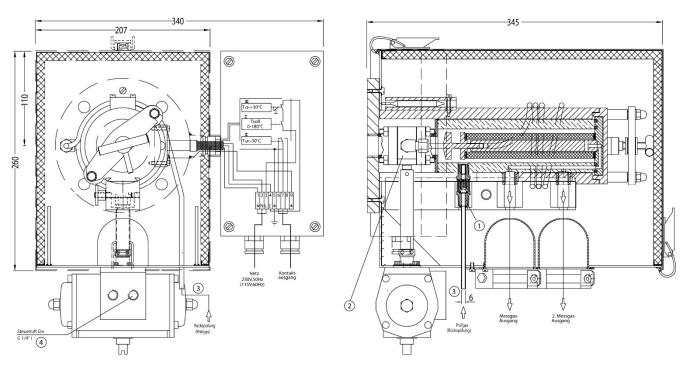


Abbildung 8 Anschluss Prüfgas/Rückspülung

• Bei Option -H320/C besteht die Möglichkeit der Prüfgasaufgabe über einen standardmäßig vorhandenen Anschluss für 6mm Rohr, der für den Messbetrieb mit Blindkappe versehen ist. Er befindet sich direkt unterhalb der Wärmeleitbacken. Für den Anschluss der Prüfgasleitung muss die Blindkappe entfernt werden. Mit Hilfe der im Lieferumfang befindlichen Überwurfmutter kann dann die Prüfgasleitung angeschlossen werden.

Achtung

Nach beendeter Prüfgasaufgabe Anschluss wieder mit der Blindkappe verschließen, da andernfalls Falschluft über diesen Anschluss gezogen wird und das Messergebnis verfälscht!

- Optional kann die Prüfgasaufgabe bzw. Rückspülung über ein Rückschlagventil -H320/R erfolgen. Das Rückschlagventil ist im Bereich des Bodenbleches montiert. Die Anschlussleitung (Rohr/Schlauch, 6mm Außendurchmesser) kann direkt an dem Rückschlagventil angeschlossen werden.
- Nach beendeter Montage Schutzhaube wieder aufsetzen und mit den Schnellspannverschlüssen befestigen.

14.6 ANSCHLUSS OPTION PNEUMATISCHER ANTRIEB MS1 ODER MS3

Die Ansteuerleitung zur Betätigung des pneumatischen Stellantriebes wird über eine entsprechende Schlauchoder Rohrverschraubung mit G1/4"-Außengewinde @ (Abb. 8 und Abbildungen 28 bis 31) angeschlossen. Der erforderliche Steuerdruck beträgt 6,5 bis 9 bar abs.

15 ELEKTRISCHER ANSCHLUSS

Warnung

Falsche Netzspannung kann das Gerät zerstören. Beim Anschluss auf die richtige Netzspannung gemäß Typenschildangabe achten!

Bei der Errichtung von Starkstromanlagen mit Nennspannungen bis 1000 V sind die Forderungen der VDE 0100 sowie Ihre relevanten Standards und Vorschriften zu beachten!

Wir empfehlen in jedem Fall die Verwendung temperaturfester Kabel! Ein Hauptschalter muss extern vorgesehen werden.

Der Versorgungsstromkreis des Gerätes muss mit einer dem Nennstrom entsprechenden Sicherung versehen werden (Überstromschutz); die elektrischen Angaben können Sie den technischen Daten entnehmen.

Wir empfehlen, den Untertemperaturalarmkontakt immer zu benutzen, um im Falle eines Alarmes den Gasfluss durch die Sonde zu stoppen und somit die nachgeschalteten Komponenten zu schützen.

15.1 STANDARDAUSFÜHRUNG MIT INTERNEM KAPILLARROHR-THERMOSTAT

- Deckel der Anschlussdose entfernen. Im Deckel befindet sich ebenfalls der abgebildete elektrische Anschlussplan (Abb. 9).
- Netzkabel (min. 3 x 1,5 mm², Klemmbereich 6 12 mm) durch die linke Kabelverschraubung M20 x 1,5 einführen und an den entsprechenden Klemmen anschließen.
- Signalkabel durch die rechte Kabeleinführung M20 x 1,5 einführen und an den entsprechenden Klemmen anschließen.
- Deckel wieder aufschrauben.

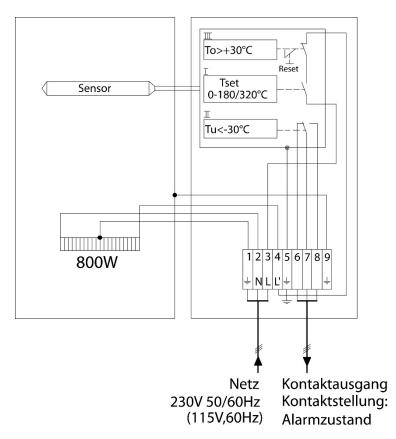


Abbildung 9 Elektrischer Anschluss für SP2000-H, SP2300-H und SP2400-H mit Thermostatregler

15.2 AUSFÜHRUNG MIT PT100 ODER THERMOELEMENT (OPTIONAL)

Wird die Gasentnahmesonde mit Temperaturfühler anstelle Thermostatregler bestellt, ist ein elektronischer Temperaturregler z.B. **M&C** Regler **70304G** (Artikel-Nr. 01B8451) notwendig. Dieser kann entweder bereits an der Sonde montiert und elektrisch angeschlossen geliefert werden oder er wird als separate Einheit zur externen Montage mitgeliefert und muss wie folgt elektrisch angeschlossen werden:

- Deckel der Anschlussdose an der Gasentnahmesonde entfernen. Im Deckel befindet sich ebenfalls der abgebildete elektrische Anschlussplan (Abb.10).
- Stromversorgungskabel (min. 3 x 1,5 mm², Klemmbereich 6 12mm) durch die linke Kabelverschraubung M20 x 1,5 der Anschlussdose einführen und an den entsprechenden Klemmen anschließen.

- Das Temperatursensorkabel durch die rechte Kabelverschraubung M20 x 1,5 der Anschlussdose einführen und an den entsprechenden Klemmen anschließen.
- Deckel wieder aufschrauben.

Bei Ausführungen mit Thermoelement (z.B. mit Option -H320/C) ist als Sensorleitung eine Ausgleichsleitung vorzusehen. Entsprechende Thermoausgleichsklemmen sind in der Anschlussdose vorhanden.

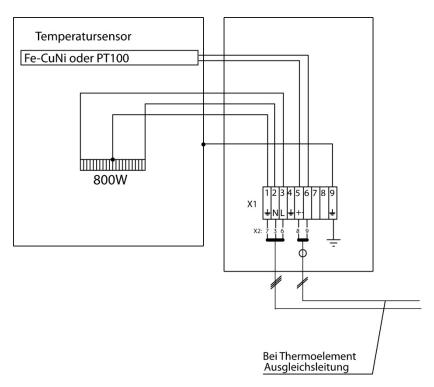


Abbildung 10 Elektrischer Anschluss eines externen Temperaturreglers z.B. 70304G

Der elektrische Anschluss des Temperaturreglers **70304G** erfolgt entsprechend dem Anschlussplan (Abb. 11) und wie im Folgenden beschrieben:

- Gehäusedeckel abschrauben
- Netzkabel (min. 3 x 1,5 mm², Klemmbereich 6 12 mm) durch die linke Kabelverschraubung M20 x 1,5 des Reglers einführen und an den entsprechenden Klemmen anschließen
- Kabel für den Alarmkontakt (Klemmbereich 6 12 mm) durch die rechte Kabelverschraubung M20 x 1,5 einführen und an den entsprechenden Klemmen anschließen

Wird der Temperaturregler **70304G** als separate Einheit mitgeliefert, ist zusätzlich die Sonde entsprechend Abbildung 10 und der folgenden Punkte mit dem Regler zu verbinden:

- Stromversorgungskabel für die Gasentnahmesonde (min. 3 x 1,5 mm², Klemmbereich 6 -12 mm) durch die zweite Kabelverschraubung M20 x 1,5 des Reglers einführen und an den entsprechenden Klemmen anschließen
- Das Temperatursensorkabel (Klemmbereich 6 12 mm) durch die dritte Kabelverschraubung M20 x 1,5 des Reglers einführen und an den entsprechenden Klemmen anschließen.
- Gehäusedeckel wieder aufschrauben.

Vorsicht

Sollten beim elektrischen Anschluss des Temperaturreglers nicht alle Kabelverschraubungen verwendet werden, müssen diese verschlossen werden, um die Dichtigkeit des Gehäuses zu gewährleisten.

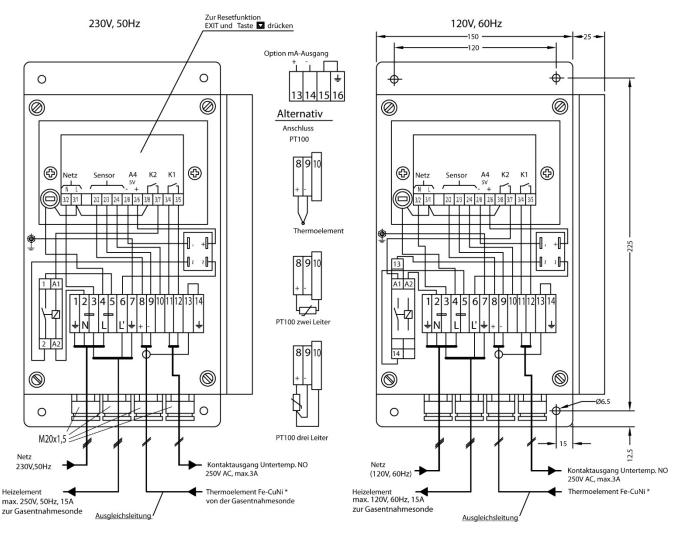


Abbildung 11 Elektrischer Anschluss elektronischer Regler 70304G

16 INBETRIEBNAHME

- Vor Inbetriebnahme überprüfen, ob die Netzspannung mit den Angaben auf dem Typenschild übereinstimmt.
- Kontrollieren, ob der ggf. eingebaute Kugelhahn geschlossen ist. Bei handbetätigtem Kugelhahn muss der Drehgriff am rechten Anschlag stehen.
- Netzspannung einschalten.
- Die Sollwerteinstellung am eingebauten Thermostat oder am externen Regler kontrollieren.
- Die Gesamtaufheizzeit beträgt ca. 2 h. Nach ca. 1 h ist die Sonde bereits so weit aufgeheizt, dass die Temperatur den Untertemperaturalarmwert (30 °C unter Sollwert) überschritten hat.

- Falls Kugelhahn vorhanden, diesen über den pneumatischen Antrieb betätigen, oder bei Handbetätigung den Drehgriff bei 2/2-Wege-Kugelhahn bis zum linken Anschlag drehen und bei 3/2-Wege-Kugelhahn in Mittelstellung bringen.
- Sonde ist jetzt betriebsbereit.

Wenn die Sollwerttemperatureinstellung am Regelthermostat während des Betriebes in einem Schritt um mehr als 28 °C nach unten verstellt werden sollte, löst die Übertemperaturabschaltung des Thermostaten aus! Zum Wiedereinschalten muss dann die Reset-Taste betätigt werden.

Bei Arbeiten während des Betriebes:

Hohe Oberflächentemperaturen!

Das Berühren kann zu Verbrennungen führen. Schutzhandschuhe tragen und Sonde gegen unbefugten Zugriff sichern!

16.1 **GASENTNAHMESONDE SP2300-H:**

Bei der Gasentnahmesonde SP2300-H besteht das elektrisch beheizte Filteraufnahmeteil aus kohlenstoffverstärktem PTFE.

Bedingt durch die unterschiedliche Längenausdehnung zwischen PTFE und dem aus Aluminium gefertigten Heizkörperteil längt sich beim Aufheizen das PTFE-Innenteil in größerem Maße als der Aluminium-Heizkörperteil. Der Längenunterschied wird über eine Feder im Deckelteil ausgeglichen.

Achtung

Wir empfehlen beim ersten Aufheizen der SP2300-H den Knebelgriff zu lockern oder das Filteraufnahmeteil komplett herauszunehmen, um die O-Ringe im Deckel zu entlasten.

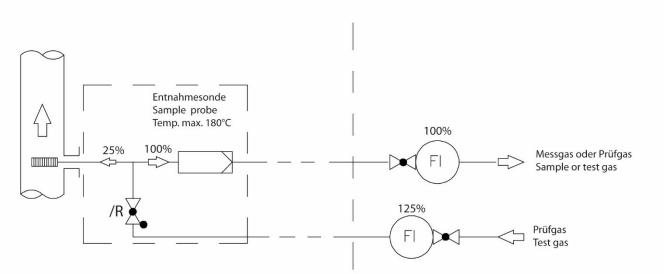
Nach Erreichen der Betriebstemperatur (> 2 h) den Knebelgriff wieder festziehen bzw. das Filteraufnahmeteil wieder in die Sonde einschieben und mit der Spannbügel-Feststellschraube andrücken.

OPTION PRÜFGASAUFGABE BZW. RÜCKSPÜLUNG 16.2

OPTION RÜCKSCHLAGVENTIL /R 16.2.1

Zur Rückspülung des Entnahmerohres oder des Vorfilters wird über das Rückschlagventil /R Spülgas aufgegeben. Hierbei ist es zweckmäßig, das nachgeschaltete Analysensystem von der Sonde abzutrennen, um Druckstöße auf das System zu vermeiden. Der Öffnungsdruck des Rückschlagventils beträgt 0,7 bar. Der Spülgasdruck muss entsprechend größer 0,7 bar sein.

Um eine Abkühlung des Sondeninneren zu vermeiden möglichst nur in mehreren kurzen Zeitintervallen <1s zurückspülen oder einen M&C Gasvorwärmer Typ GVW. (siehe Datenblatt 2.23) verwenden.



Die Zuleitung des Rückspülgases möglichst kurz und mit großer Nennweite durchführen, um beim Rückspülvorgang Druckverluste in der Zuleitung zu vermeiden.

- Bei der Prüfgasaufgabe bleibt das Analysensystem angeschlossen.
- Die Prüfgasmenge muss mindestens 25 % größer als die von dem Analysensystem angesaugte Messgasmenge sein, um eine Vermischung mit dem Probengas zu vermeiden.
- Bei Prozessen mit Über- oder Unterdruck wird ein integrierter Kugelabsperrhahn im Sondeneingang empfohlen. Hier reicht eine geringere Prüfgasmenge aus, da die Sonde durch Betätigen des Kugelhahns vom Prozess getrennt wird.
- Zur Absperrung des handbetätigten Kugelhahnes Drehgriff nach rechts bis zum Anschlag drehen.

Bei Unterdruckbetrieb ist zu beachten, dass über das nicht verschlossene Rückschlagventil /R bei weniger als 300 mbar abs. Falschluft angesaugt würde.

Bei der Prüfgasaufgabe über das Rückschlagventil /R an der Sonde muss eine Vermischung mit dem Messgas vermieden werden. Die Prüfgas-Durchflussmenge muss mindestens 25% größer als die Messgasmenge sein.

Abbildung 12 Prüfgasaufgabe-Schema

16.2.2 OPTION 3/2-WEGE-KUGELHAHN /3VA UND /3VA320

Mit dem 3/2-Wege-Kugelhahn können bei Handbetätigung die Funktionen "Rückspülung **und** Prüfgasaufgabe" nacheinander vorgenommen werden. Über einen pneumatischen Antrieb wird jeweils eine dieser Funktionen automatisiert.

Diese Art der Gasaufgabe hat die Vorteile, dass bei der Rückspülung das nachgeschaltete Analysensystem von der Sonde automatisch getrennt und damit vor einem Druckstoß geschützt ist, bzw. das bei der Prüfgasaufgabe die Sonde automatisch vom Prozess getrennt ist und somit eine geringere Prüfgasmenge erforderlich ist, da keine Vermischung mit dem Prozessgas erfolgen kann. Während der Funktion Rückspülen kann über ein zusätzliches Rückschlagventil /R gleichzeitig Prüfgas aufgegeben werden (siehe auch Abb. 13).

- Für den Messbetrieb Kugelhahn in die Mittelstellung bringen.
- Zur Rückspülung Griff aus der Mittelstellung nach links bis zum Anschlag drehen.
- Für die Prüfgasaufgabe Griff aus der Mittelstellung nach rechts bis zum Anschlag drehen.
- Für den Messbetrieb Kugelhahn wieder in die Mittelstellung bringen.

16.3 OPTION KUGELHAHNANTRIEBE

Für die externe Ansteuerung eines in die Sonde integrierten Kugelhahnes besteht die Möglichkeit einen pneumatischen Antrieb mit Federrückholung Typ MS1, MS3 (für 320 °C) oder einen elektrischen Antrieb **EA** zu verwenden.

16.3.1 OPTION PNEUMATISCHER ANTRIEB MS1 ODER MS3 BEI VERWENDUNG EINES 2/2-WEGE KUGELHAHNES /VA

Kugelhahn geöffnet = Messbetrieb

Kugelhahn geschlossen = z.B. Filterelementwechsel bei Prozessüberdruck oder toxischem Messgas oder Prüfgasaufgabe mit Rückschlagventil Option /R ohne Prüfgasverlust in den Prozess

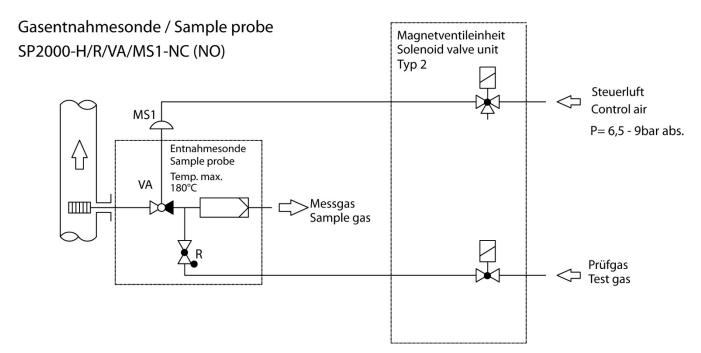


Abbildung 13 Pneumatischer Antrieb für 2/2-Wege Kugelhahn

Bei der Bestellung ist festzulegen, ob der Kugelhahn

NC, d.h. ohne Ansteuerluft geschlossen , oder

NO, d.h. ohne Ansteuerluft geöffnet und damit auf Messen geschaltet ist.

Standard = NC

16.3.2 OPTION PNEUMATISCHER ANTRIEB MS1 ODER MS3 BEI VERWENDUNG EINES 3/2-WEGE-KUGELHAHNES/3VA

Mit dem pneumatischen Antrieb **MS1** oder **MS3** können in Verbindung mit dem 3/2-Wege Kugelhahn /3VA zwei Funktionen realisiert werden:

- 1. Messen und Rückspülen MS-B
- 2. Messen und Prüfgas aufgeben MS-C

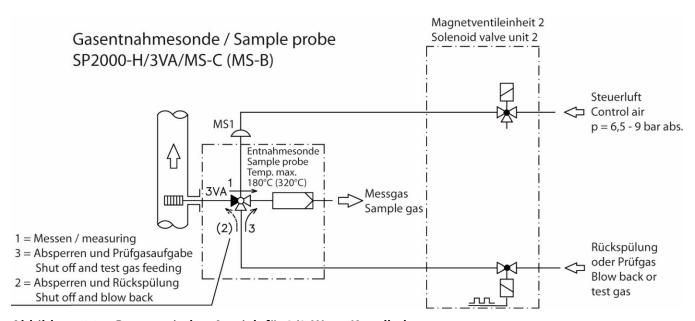


Abbildung 14 Pneumatischer Antrieb für 3/2-Wege Kugelhahn

Bei der Bestellung ist festzulegen, ob der Kugelhahn

NC, d.h. ohne Ansteuerluft geschlossen bzw. auf Prüfgasaufgabe oder Rückspülung geschaltet, oder **NO**, d.h. ohne Ansteuerluft geöffnet und damit auf Messen geschaltet ist.

Standard = NC

16.3.3 OPTION ELEKTRISCHER KUGELHAHNANTRIEB

Die elektrischen Kugelhahnantriebe zur Ansteuerung von zwei Betriebszuständen sind in drei Steuerspannungen 230 V, 115 V oder 24 V DC lieferbar.

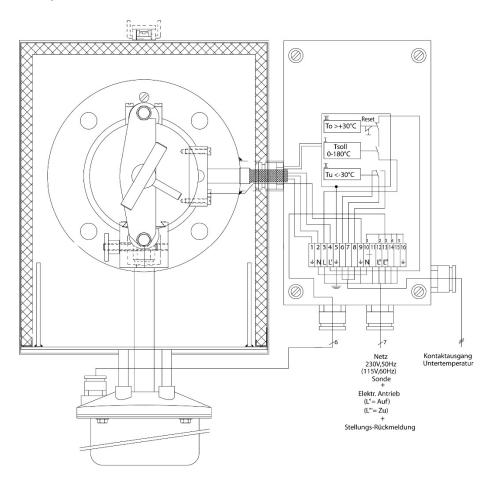
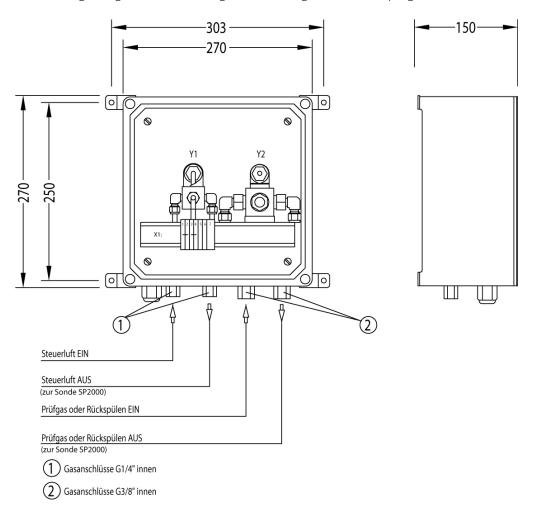


Abbildung 15 Elektrischer Anschluss für elektrischen Kugelhahnantrieb

16.4 OPTION MAGNETVENTILEINHEITEN FÜR RÜCKSPÜLUNG, PRÜFGASAUFGABE UND ANSTEUERUNG DER PNEUMATISCHEN ANTRIEBE

Alle Magnetventileinheiten enthalten ein 3/2-Wege Magnetventil zur Ansteuerung des pneumatischen Antriebs. Ein Weg des Magnetventils dient zum Umschalten des Kugelhahnes, der andere zur Entlüftung und damit Rückstellung des Kugelhahnes. Weiterhin sind je nach Bedarf 2/2-Wege Magnetventile zur Rückspülung und/oder Prüfgasaufgabe vorhanden.

Die Zuleitung des Rückspülgases möglichst mit großer Nennweite durchführen, um beim Rückspülvorgang Druckverluste in der Zuleitung zu vermeiden.


Folgende Magnetventileinheiten stehen z.B. zur Verfügung:

Magnetventileinheit 2

Mit 2 Magnetventilen zur Ansteuerung von 2 Betriebszuständen:

1 x 3/2-Wege Magnetventil zum Umschalten von Messbetrieb auf Rückspülung **oder** Prüfgasaufgabe

1 x 2/2-Wege Magnetventil zur Aufgabe von Prüfgas oder Rückspülgas

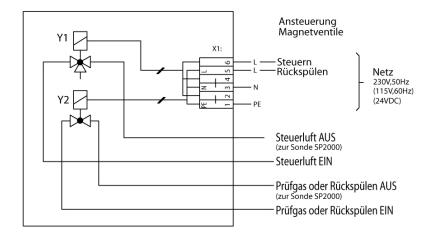
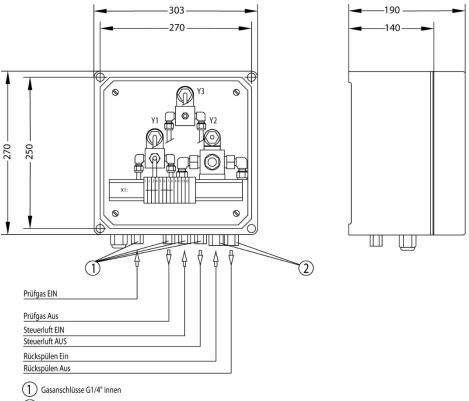



Abbildung 16 Anschlüsse Magnetventileinheit 2

Magnetventileinheit 3

- Mit 3 Magnetventilen zur Ansteuerung von 2 Betriebszuständen:
- 1 x 3/2-Wege Magnetventil zum Umschalten von Messbetrieb auf Rückspülung bei z.B. Option /3VA
- 1 x 2/2-Wege Magnetventil zur Aufgabe von Prüfgas über Option /R
- 1 x 2/2-Wege Magnetventil zur Aufgabe von Rückspülgas

(2) Gasanschlüsse G3/8" innen

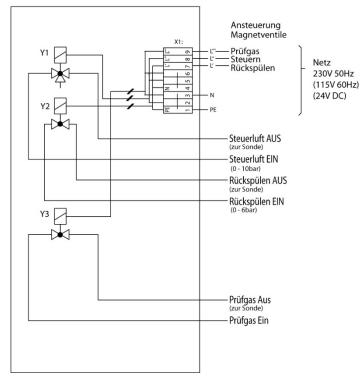


Abbildung 17 Anschlüsse Magnetventileinheit 3

16.4.1 OPTION ANSTEUEREINHEIT 234B FÜR DIE MAGNETVENTILEINHEITEN

Die Ansteuereinheit **234B** dient zur Ansteuerung der Magnetventile in den Magnetventileinheiten für eine getaktete Rückspülung. Sie wird auf Hutschiene im GFK-Schutzgehäuse der Magnetventileinheit montiert und elektrisch angeschlossen geliefert.

16.4.1.1 FUNKTION UND EINSTELLUNG DES TAKTGEBERS K3

Die Ansteuerung des Rückspülvorganges erfolgt mit dem elektronischen Taktgeber K3 (Typ CT-MXS.22). Dieser besitzt 2 separate Zeiteinstellmöglichkeiten für die Impuls- und für die Pausendauer. Während der Impulsdauer erfolgt die Rückspülung der Sonde. In der Front des Taktgebers befinden sich die Einstellmöglichkeiten für die Zeitbereiche (Range) und das Potentiometer für die Feineinstellung (Time). Beliebige Rückspül- und Pausenzeiten sind so getrennt einstellbar. Bei der Feineinstellung (Time) hat die Skala Gültigkeit, die der Farbe der Zeitbereichseinstellung (Range) entspricht.

Beispiel:

Im Abstand von 12 h soll für insgesamt 10 s zurückgespült werden Dauer der Rückspülung: 10 s

Pause: 12 h

Einstellung "Dauer der Rückspülung" (10 s): Das Potentiometer (Time 2) auf 10 (weiße Skala) und den Zeitbereichssteller (Range 2) auf 10 s einstellen

Einstellung "Pause" (12 h): Den Zeitbereichsteller (Range 1) auf 30 h und das Potentiometer (Time 1) auf 12 (orange Skala) einstellen

16.4.1.2 FUNKTION UND EINSTELLUNG DES TAKTGEBERS K2

Über Taktgeber K2 (EZ12TI) wird das Magnetventil Y2 (Abb. 15 und 16) für die Aufgabe von Rückspülgas angesteuert. Hier werden Länge der einzelnen Rückspülimpulse und Pausenzeiten zwischen den einzelnen Rückspülimpulsen eingestellt.

In der Front des Taktgebers K2 befinden sich die Schalter für die Zeitbasis T und den Multiplikator xT1 und xT2. Mit xT1 wird die Dauer der Rückspülung z.B. 1 s und mit xT2 die Pausenzeit zwischen den einzelnen Rückspülstößen z.B. 1 s eingestellt.

Beispiel:

Taktzeit und Pausenzeit: 1 s Die Zeitbasis T auf 0,5 s und den Multiplikator xT1 und xT2 auf 2 einstellen $(2 \times 0,5 \text{ s} = 1 \text{ s})$

16.4.1.3 FUNKTION UND EINSTELLUNG DES ANZUGVERZÖGERTEN ZEITRELAIS K1

Das Zeitrelais K1 (EZ12AV) beendet nach dem Rückspülvorgang mit einer Zeitverzögerung von z.B. 1 min. die Meldung "Rückspülen" und gibt die Messung wieder frei, damit sich beim Umschalten von Spülen auf Messen aktuelles Messgas in den Analysatoren befindet.

In der Front des Zeitrelais befinden sich die Schalter für die Zeitbasis T und den Multiplikator xT.

Beispiel:

Verzögerungszeit: 1 min.

Die Zeitbasis T auf 1 min. und den Multiplikator xT auf 1 einstellen (1 x 1 min. = 1 min).

16.4.1.4 FUNKTION FÜR KUGELHAHNSTELLUNG NC "NORMAL GESCHLOSSEN"

Nach Auslösen des Rückspülvorganges durch K3 (Typ CT-MXS.22) erfolgt über das Zeitrelais K1 (EZ12AV) die Meldung Spülen, das Steuer-Magnetventil Y1 (s. Abb. 15 und 16) wird geschlossen und der Kugelhahn kehrt durch Federrückholung in seine Ruhestellung zurück (Rückspülen).

Das Taktrelais K2 (Typ EZ12TI) wird z.B. 10 s lang angesteuert und schaltet wiederum z.B. im 1 s-Takt das Rückspülmagnetventil Y2 ein und aus.

Danach erfolgt die Pausenzeit, in welcher das Magnetventil Y1 wieder zur Messgasentnahme umgeschaltet wird. Gleichzeitig wird das anzugverzögerte Zeitrelais geschaltet, welches nach der Verzögerungszeit von z.B. 1 min. die Meldung "Spülen" beendet und die Messung wieder frei gibt. Diese Verzögerungszeit ist notwendig, damit sich beim Umschalten von Spülen auf Messen aktuelles Messgas in den Analysatoren befindet.

16.4.1.5 FUNKTION FÜR KUGELHAHNSTELLUNG NO "NORMAL OFFEN"

Nach Auslösen des Rückspülvorganges durch K3 (Typ CT-MXS.22) erfolgt über das Zeitrelais K1 (EZ12.AV) die Meldung Spülen, das Steuer-Magnetventil Y1 (s. Abb. 15 und 16) wird geöffnet und der pneumatische Antrieb bewegt den Kugelhahn in die Stellung "Rückspülen".

Das Taktrelais K2 (Typ EZ12.Tl) wird z.B. 10 s lang von K3 angesteuert und schaltet wiederum z.B. im 1 s-Takt das Rückspülmagnetventil Y2 ein und aus.

Danach erfolgt die Pausenzeit, in welcher das Magnetventil Y1 wieder zur Messgasentnahme umgeschaltet wird. Gleichzeitig wird das anzugverzögerte Zeitrelais geschaltet, welches nach der Verzögerungszeit von z.B. 60 s. die Meldung "Spülen" beendet und die Messung wieder frei gibt. Diese Verzögerungszeit ist notwendig, damit sich beim Umschalten von Spülen auf Messen aktuelles Messgas in den Analysatoren befindet.

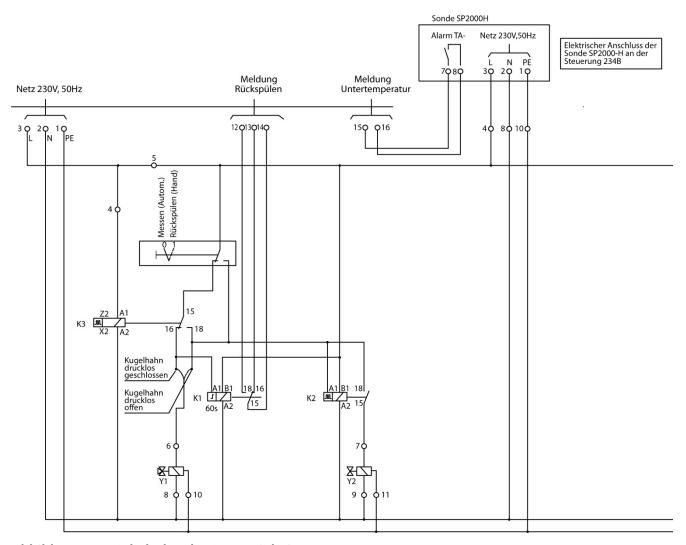


Abbildung 18 Schaltplan der Steuereinheit 234B

17 WARTUNG

Vor jeglichen Wartungsarbeiten sind die anlagen- und prozessspezifischen Sicherheitsmaßnahmen zu beachten! Empfehlungen eines Wartungszyklus können nicht ausgesprochen werden. In Abhängigkeit Ihrer Prozessgegebenheiten muss ein sinnvoller Wartungszyklus anwendungsspezifisch ermittelt werden.

Als Indikation für eine eventuell notwendige Sondenwartung kann ein stetiger Rückgang der Messgasmenge zu Ihrem Analysensystem sein.

Die Wartung bei der Sonde beschränkt sich hauptsächlich auf das Auswechseln der Filterelemente und Kontrolle der Dichtungen.

Warnung!

Sicherheitsrelevante betriebsspezifische Vorgaben bei Wartungsarbeiten beachten!

Warnung!

Aggressives Kondensat möglich.

Schutzbrille und entsprechende Schutzkleidung tragen!

Bei Arbeiten während des Betriebes: Hohe Oberflächentemperaturen!

Das Berühren kann zu Verbrennungen führen. Schutzhandschuhe tragen und Sonde gegen unbefugten Zugriff sichern!

17.1 FILTERELEMENTWECHSEL UND KONTROLLE DER DICHTUNGEN

- Kugelhahn (falls vorhanden) schließen. Bei toxischen Gasen Sonde spülen!
- Schutzhaube nach Öffnen der Spannverschlüsse abnehmen.
- Filteraufnahmeteil wie unter Kapitel 14.1 beschrieben entnehmen.
- Filterrändelschraube I herausdrehen, wenn vorhanden Adapter L in neues Filterelement einsetzen und Filterelement J ersetzen.
- Filterelement-Dichtungen **K** kontrollieren und ggf. austauschen.
- O-Ringe (bei **/320H..** Graphit-Flachdichtung, bei **/7aT** PTFE-Formringe) im Deckel kontrollieren und ggf. austauschen.

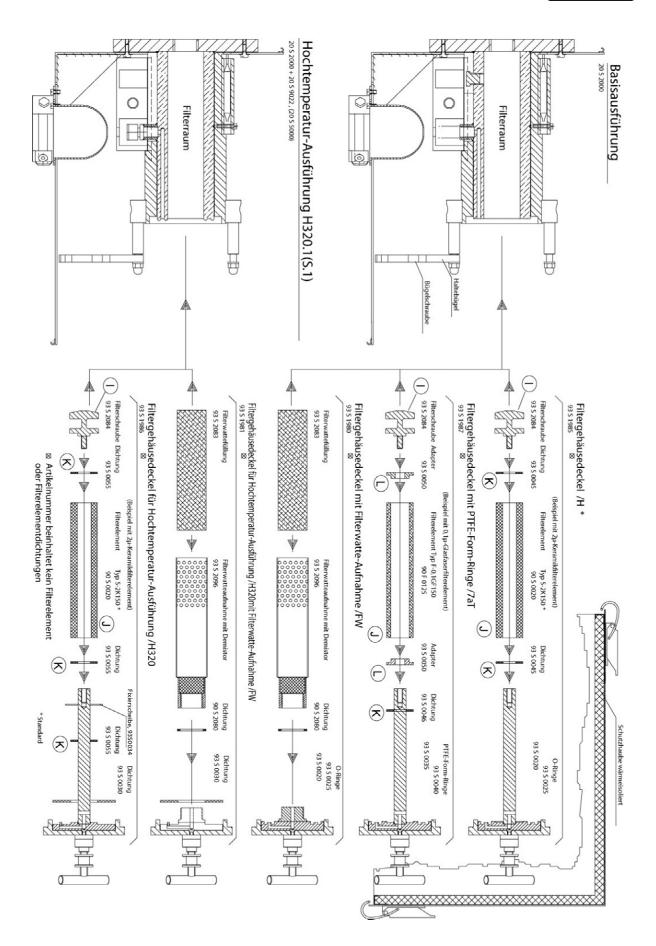


Abbildung 19 Filterelemente und Dichtungen

- Filterraum reinigen.
- Wenn notwendig das Entnahmerohr durchstoßen, um Ablagerungen zu entfernen. **Vorsicht Bruchgefahr** bei Entnahmerohren aus Aluminiumoxyd!
- Filteraufnahmeteil wiedereinsetzen, Handgriff **C** in Position **F** stellen und Deckel mit Knebelgriff **A** wieder festziehen.
- Schutzhaube aufsetzen und mit Schnellspannverschlüssen befestigen.
- Kugelhahn (falls vorhanden) öffnen.

17.2 WECHSEL DES OPTIONALEN VORFILTERS

Zum Auswechseln von Vorfiltern muss die komplette Sondeneinheit demontiert und aus dem Prozess herausgenommen werden:

Bei Arbeiten während des Betriebes: Hohe Oberflächentemperaturen!

Das Berühren kann zu Verbrennungen führen. Schutzhandschuhe tragen und Sonde gegen unbefugten Zugriff sichern!

- Die 4 Flanschmuttern lösen und die Befestigungsschrauben, falls möglich, entfernen (nicht bei Vorfiltern V12..., Adapterflanschen oder SP30-H...)
- Die Sonde mit Vorfilter aus dem Prozess herausziehen.
- Vorfilter abkühlen lassen und dann herausschrauben bzw. bei Vorfiltern V12... die 4 sondenseitigen Flanschmuttern entfernen (siehe auch Abb. 6).
- Vorfilter austauschen oder reinigen.

Die Vorfilter können je nach Verschmutzungsart und -grad mechanisch oder im Ultraschallbad bedingt gereinigt und wieder verwendet werden.

17.3 WECHSELN DER HEIZPATRONE UND DES THERMOSTATEN

Vor Wartungsarbeiten an elektrischen Teilen ist die Netzspannung allpolig abzuschalten! Dies gilt auch für eventuell angeschlossene Alarm- und Steuerstromkreise.

- Sonde spannungsfrei schalten (Versorgungsspannung ausschalten) und abkühlen lassen.
- Schutzhaube nach Öffnen der Spannverschlüsse abnehmen.
- Deckel der elektrischen Anschlussdose nach Lösen der 4 Schrauben abnehmen.

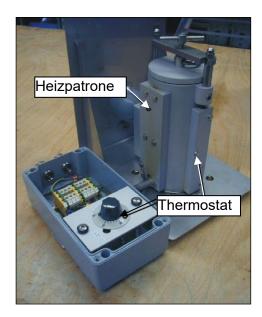


Abbildung 20 Position von Thermostat und Heizpatrone

• Die beiden Sechskantschrauben **A** (Abb. 21) in der Rückwand der Anschlussdose, mit welchen diese an der Haltelasche montiert ist, herausschrauben.

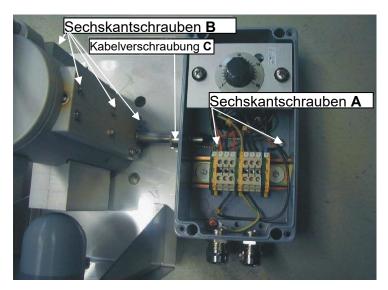


Abbildung 21 Position der Befestigungsschrauben von Anschlussdose, Thermostatsensor- und Heizpatronen-Aufnahmeplatte

- Die Sechskantschrauben **B** (Abb.21) für die Befestigung der Heizpatronen-Aufnahmeplatte und der Thermostatsensor-Aufnahmeplatte herausschrauben.
- Anschlussdose einschließlich Heizpatrone und Thermostatsensor abnehmen.

Abbildung 22 Demontierte elektrische Anschlussdose mit Heizpatrone und Thermostatsensor

- Die Kabelverschraubung **C** (Abb. 21) für Heizpatrone und Kapillare des Thermostaten lösen.
- Elektrische Anschlussleitungen der Heizpatrone und des Thermostaten an der Klemmleiste abklemmen (Abb. 9).
- Den Drehknopf am Thermostat abziehen. Die 2 darunter befindlichen Feststellschrauben **D** (Abb. 23) entfernen. Die 2 Befestigungsschrauben **E** (Abb. 23) der Thermostat-Aufnahmeplatte entfernen.

- Heizpatrone durch die Kabelverschraubung **C** (Abb. 21) aus der Anschlussdose herausziehen.
- Thermostatsensor durch die Kabelverschraubung in entgegengesetzter Richtung herausziehen.
- Neuen Thermostat montieren und den Thermostatfühler von innen durch die Kabelverschraubung durchführen.
- Neue Heizpatrone von außen durch die Kabelverschraubung einführen.
- Elektrische Leitungen gemäß Anschlussplan (Abb. 9) anschließen
- Die komplette Einheit wieder an die Sonde montieren.

Der Thermostat besitzt einen mechanischen Stopp, mit welchem die maximale, mit dem Drehknopf einstellbare, Temperatur begrenzt wird.

Bei der Montage des Thermostaten diesen mechanischen Stopp so einstellen, dass der Pfeil auf dem metallischen Ring auf die gewünschte max. Temperatur zeigt. (Standardeinstellung 190 °C).

Abbildung 23 Einstellung des mechanischen Stopps am Thermostatregler

Bei Gasentnahmesonden mit Temperatursensor (PT100 oder Thermoelement) anstelle des Thermostaten wird die Sensoranschlussleitung mit der Heizpatrone durch die Kabelverschraubung geführt. Hierzu die Anschlussleitung in die Sicke des Dichtungsrings und der beiden Metallringe legen.

18 AUSSERBETRIEBNAHME

Vorsicht

Vor Außerbetriebnahme, d.h. Abschalten der Beheizung muss die Gasförderung über die Sonde abgeschaltet werden und die Sonde mit Inertgas oder Luft gespült werden, um Kondensation von aggressiven Bestandteilen aus dem Prozessgas zu vermeiden.

19 ENTSORGUNG

Ist das Gerät am Ende seiner Lebensdauer angekommen, beachten Sie bitte zur fachgerechten Entsorgung die gesetzlichen Bestimmungen und ggf. sonstigen bestehenden Normenregelungen Ihres Landes.

20 ERSATZTEILLISTEN

Der Verschleiß- und Ersatzteilbedarf ist von den spezifischen Betriebsgegebenheiten abhängig. Die Mengenempfehlungen für Verschleiß- und empfohlene Ersatzteile beruhen auf Erfahrungswerten und sind unverbindlich.

Gasentnahmesonde SP2000, SP2000-H, SP2300-H, SP2400-H

- (V) Verschleißteile
- (E) empfohlene Ersatzteile
- (T) Ersatzteile

(T) Ersatzte	ile				
		Empfohlene Stückzahl			
			rieb [Ja	hren]	,
Artikel-Nr.	Bezeichnung	V/E/T	1	2	3
90S0020	Filterelement S-2K150, Keramik, 2 μm, 150 mm	V	6	12	18
90F0125	Filterelement F-0,1GF150 , Glasfaser, 0,1 μm, 150 mm	V	6	12	18
93S2083	Spezielle Glaswolle, hochtemperaturfest für Sonden mit /FW Filtereinsatz. Inhalt:1000g.	V	1	2	3
93S0045	Flachdichtung (30) für Filterelement. Werkstoff: Viton°.	Е	4	8	12
93S0055	Flachdichtung (30) für Filterelement. Werkstoff: Graphit.	Е	4	8	12
93S0046	Flachdichtung (30) für Filterelement. Werkstoff: PTFE	Е	4	8	12
93S0020	Viton° O-Ring (39) für Deckel	E	2	4	8
93S0025	Viton° O-Ring (55) für Deckel	Е	2	4	8
93S0030	Flachdichtung (69) für Deckel SP2000-H320. Werkstoff Graphit	Е	2	4	8
93S0034	Fixierscheibe für Deckeldichtung aus Grafit für Gasentnahmesonde Typ SP2000-H320	Е	-	-	1
93S0035	Formring (39) für Deckel SP2000/7aT Werkstoff: PTFE	Е	1	2	3
93S0040	Formring (55) für Deckel SP2000/7aT Werkstoff: PTFE	Е	1	2	3
90S2080	Novapress°-Dichtung 3/4" (blau), max. 600 °C für Entnah- merohre	Е	1	2	3
90S2077	Novapress®-Flanschdichtung DN65PN6 (67mm i.)	Е	1	1	1
90S2075	Flanschdichtungsset für DN65 PN6 B, bestehend aus Novapress*-Dichtung und M12-Schraubenset	Т	1	1	1
93S0010	Thermostat (0 - 180°C), mit Übertemperaturbegrenzer und Untertemperaturalarm für Sonden Serie SP	Е	-	-	1
93S0011	Thermostat (0 – 320 °C), mit Übertemperaturbegrenzer und Untertemperaturalarm für Sonden Serie SP	Е	-	-	1
93S0015	Heizpatrone 230 V AC/800 W, Länge 160 mm	Е	-	-	1
93S0017	Heizpatrone 115 V AC/800 W, Länge 160 mm	E	-	-	1
93S0059	Ersatz-PT100	Е	-	-	1
93S0060	Thermoelement Fe-CuNi mit Klemmring und Klemm- schraube	Е	-	-	1
93S0061	Thermoelement Ni-CrNi mit Klemmring und Klemm- schraube	Е	-	-	1

21 ANSCHLUSS- UND MONTAGEDATEN

Gasentnahmesonde Typ	SP2000	SP2000-H	SP2300-H	SP2400-H			
Abmessungen B x H x T	340 x 260 x 345						
Werkstoffe Filtergehäuse	Rostfreier Stahl 1.4571*		PTFE-Ko	Titan			
Dichtwerkstoffe	FKM* /7aT** = PTFE /H320** = Graphit						
Werkstoff Sondenflanschdichtung							
Untertemperatur-Alarmkontakt		Schaltleistung: 250 V, 3 A \sim , 0,25 A=, Schaltpunkt: Δ T 30 $^{\circ}$ C					
Anschluss	$1 \times \frac{1}{4}$ "NPTi* für Rohranschluss Ø 6, 8 oder 10 mm**, /H320** = 6						
Gasausgang/zweiter Gasausgang	mm* oder 8 mm**						
Rückspül-/Prüfgasanschluss	ickspül-/Prüfgasanschluss $\frac{1}{4}$ "NPTi*, /R** und H320** = Rohr \emptyset 6 mm						
Netzversorgung/Leistung/Absicherung			230 V 50/60 Hz, 800 W, /115 V** = 115 V 60 Hz, 800 W Absicherung 10 A				
Elektrischer Anschluss		Klemmen max. 4 mm², 2 x M20 x 1,5 Kabelver- schraubung					
Montageflansch	DN 65 PN 6, Form B, 1.4571*, >DN oder ANSI möglich**, /HP**=DN 50 PN2 5						
Regler Typ	70304G						
Abmessungen (B x H x T)	150 x 250 x 145 mm						
Statussignalausgang	Untertemperaturalarm: 1 Kontakt NO, potentialfrei. Schaltleistung max. 250 VAC 3 A						
Elektrischer Anschluss	Klemmen max. 4 mm², 4 x M20 x 1,5 Kabelverschraubung						
Hilfsenergie	115 V 50/60 Hz 1725 VA, 230 V 50/60 Hz 3450 VA						
Pneumatischer Kugelhahnantrieb Typ	MS1 und MS3						
Anschluss Ansteuerleitung	G 1/4 " i						
	-						
Elektrischer Kugelhahnantrieb Typ	EA						
Statussignalausgang	Positionsendschalter 250 V AC, 11 A AC, 0,25 A DC** (Netzpotential)						
Elektrischer Anschluss	Klemmen max. 4 mm², 2 x M20 x 1,5 Kabelverschraubung						
Hilfsenergie	230 V 50 Hz, 140 W (115 V 60 Hz oder 24 V DC)						
Statussignal potentialfrei**	2 x Positionsendschalter, potentialfrei, Auf/Zu, 250 V, 16 A						
Magnetventileinheiten Typ	2		3				
Abmessungen B x H x T	270 x 270 x 15						
Pneumatische Anschlüsse	2 x Steuerluft 2 x Rückspüle	euerluft G 1/4" i 2 x Steuerluft G 1/4" i 3 x Rückspülen G 3/8" i 3 x Rückspülen G 3/8" i					
Elektrischer Anschluss	Klemmen max. 4 mm², 3 x M20 x 1,5 Kabelverschraubung						
Hilfsenergie	115 V 50/60 Hz 20 W, 230 V 50/60 Hz 20 W, 24 V DC 20 W						
	L						

^{*} Standard

46

^{**} optional

22 ANHANG

- Abmessungen/Konstruktionsmerkmale
- Entnahmemöglichkeiten
- Kugelventil-Optionen und Prüfgas- Rückspülaufgabe
- 3/2-Wege-Kugelhahn und pneumatischer Antrieb (4 Zeichnungen)

Weiterführende Produktdokumentationen können im Internetkatalog unter: www.mc-techgroup.com eingesehen und abgerufen werden.

• Entnahmerohre Serie **SP**

Dokument: 2.14Vorfilter Serie SP Dokument: 2.17

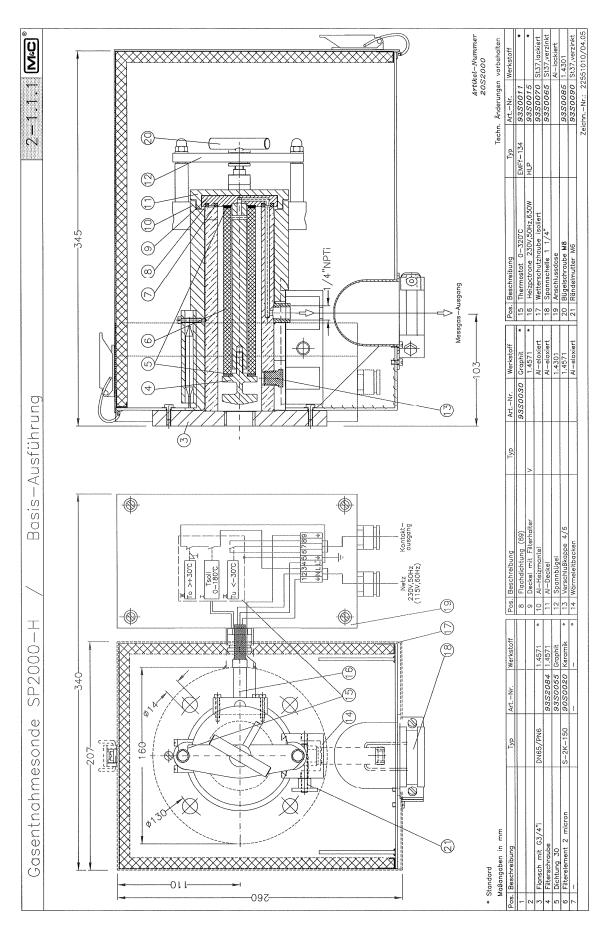


Abbildung 24 SP2000-H Basisausführung

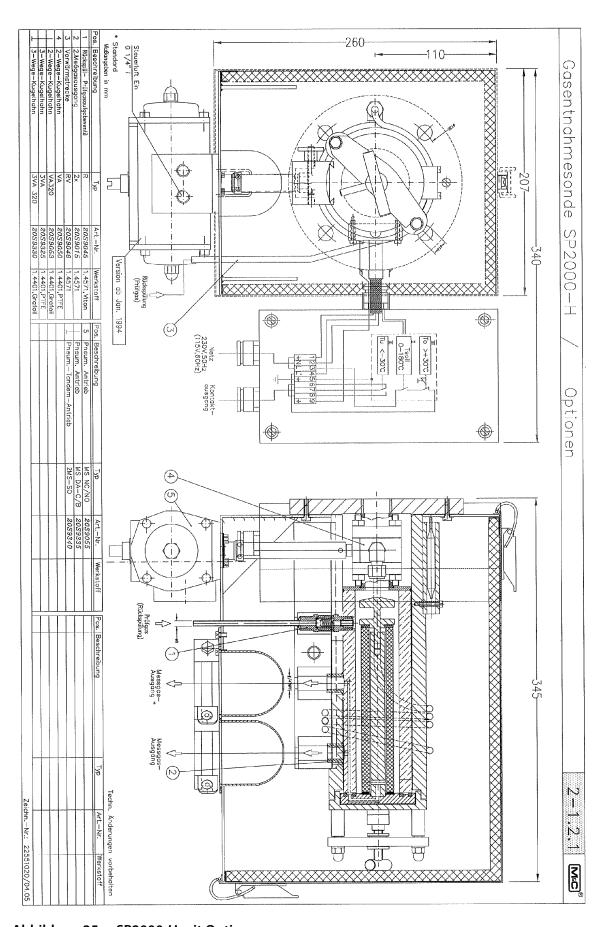


Abbildung 25 SP2000-H mit Optionen

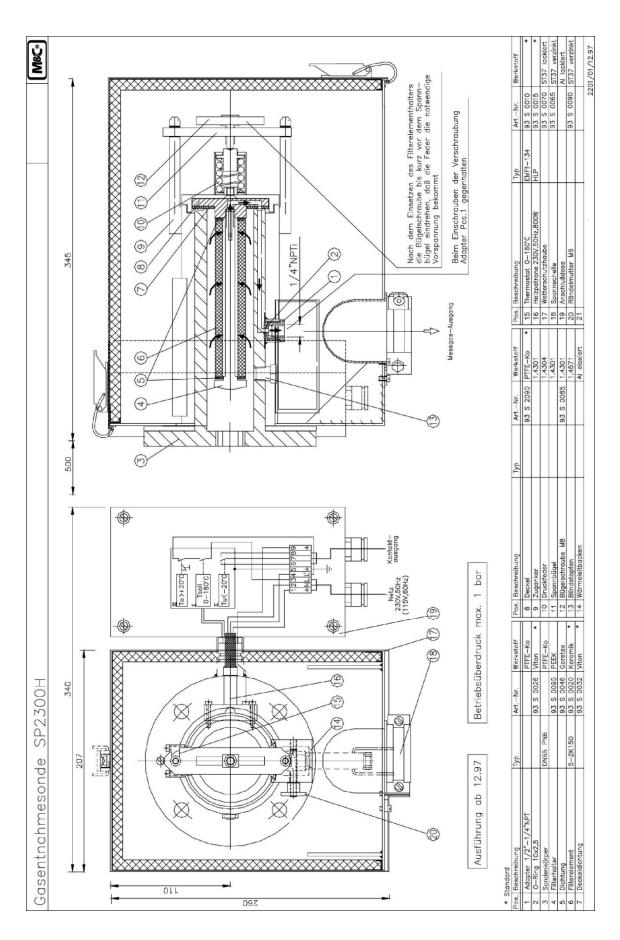


Abbildung 26 SP2300-H

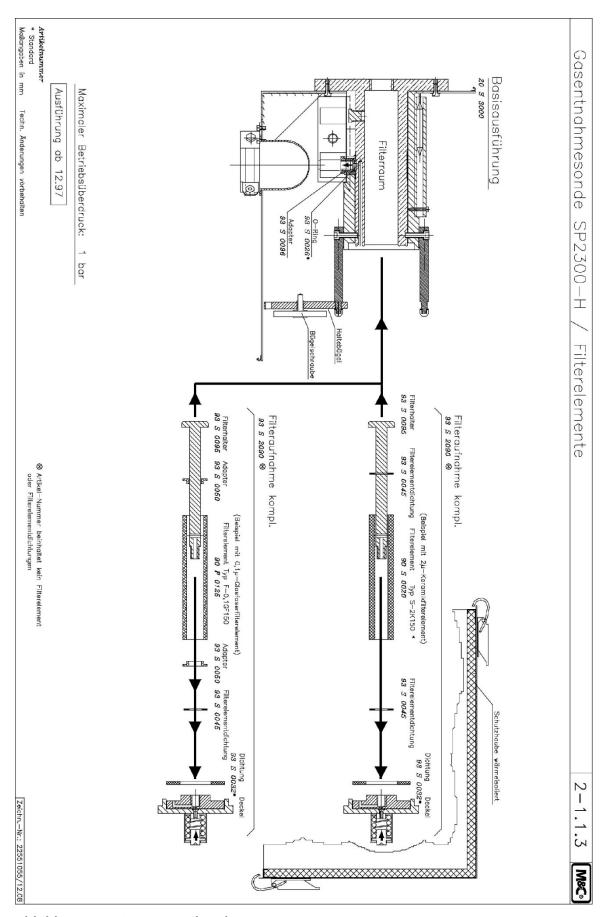


Abbildung 27 SP2300-H Filterelemente

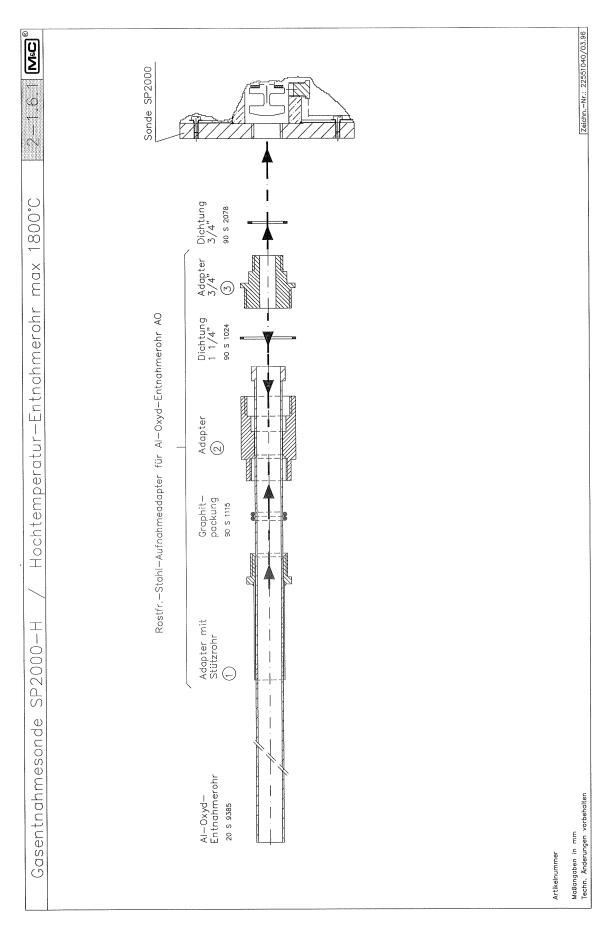


Abbildung 28 Hochtemperatur-Aluminiumoxydrohr AO

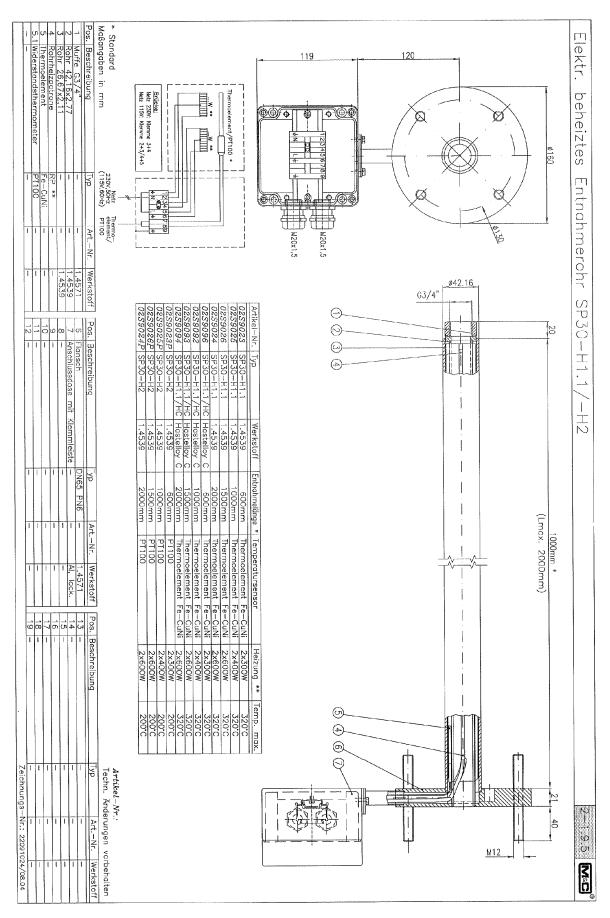
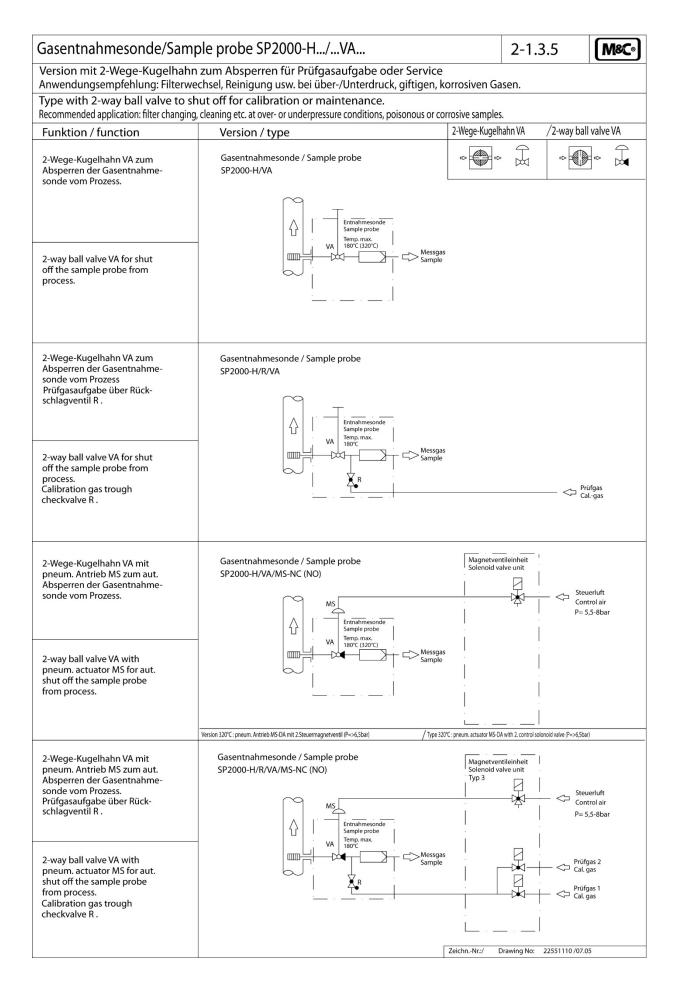



Abbildung 29 Beheizte Entnahmerohre SP30-H...

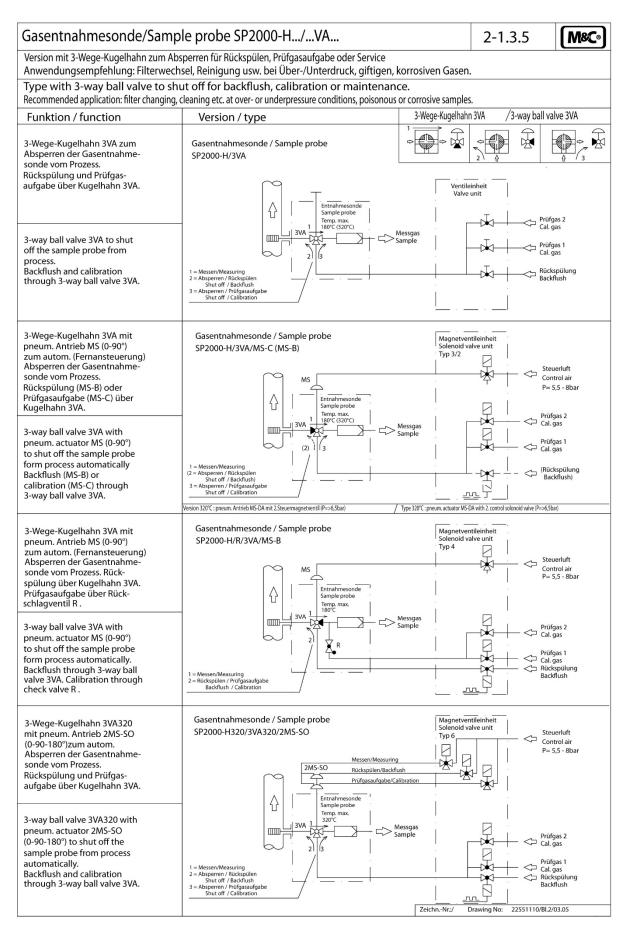


Abbildung 30 Prüfgasaufgabe- und Rückspülmöglichkeiten

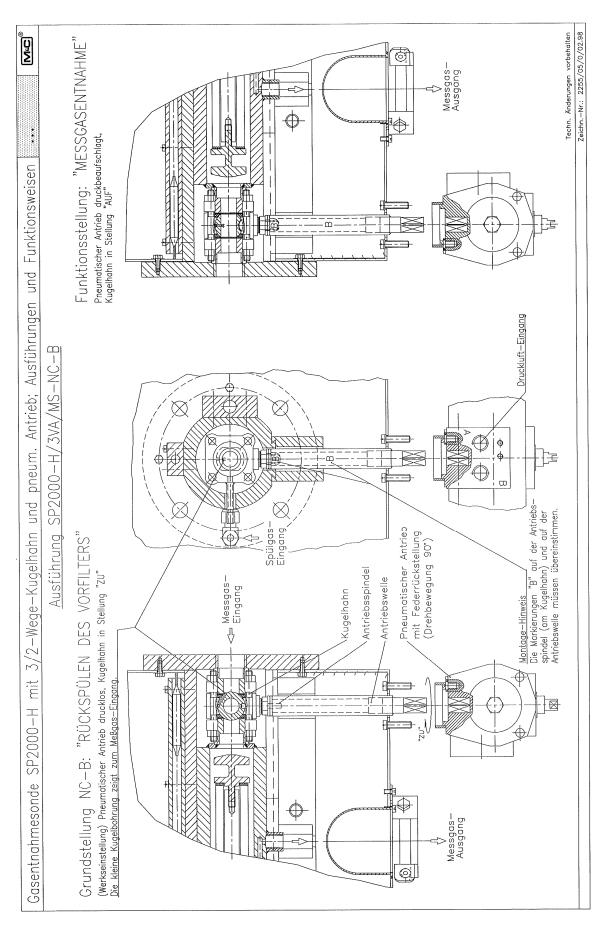


Abbildung 31 SP2000-H/3VA/MS-NC-B

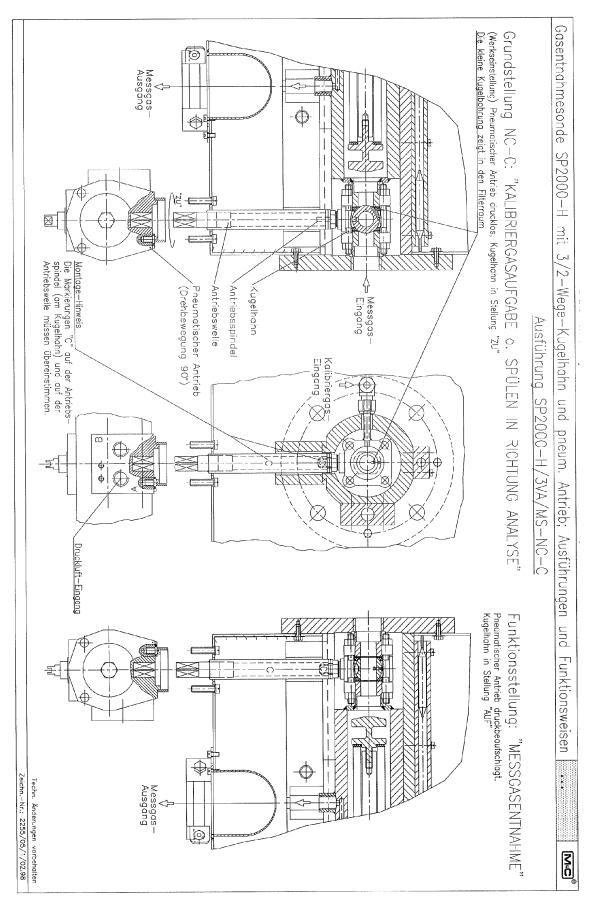


Abbildung 32 SP2000-H/3VA/MS-NC-C

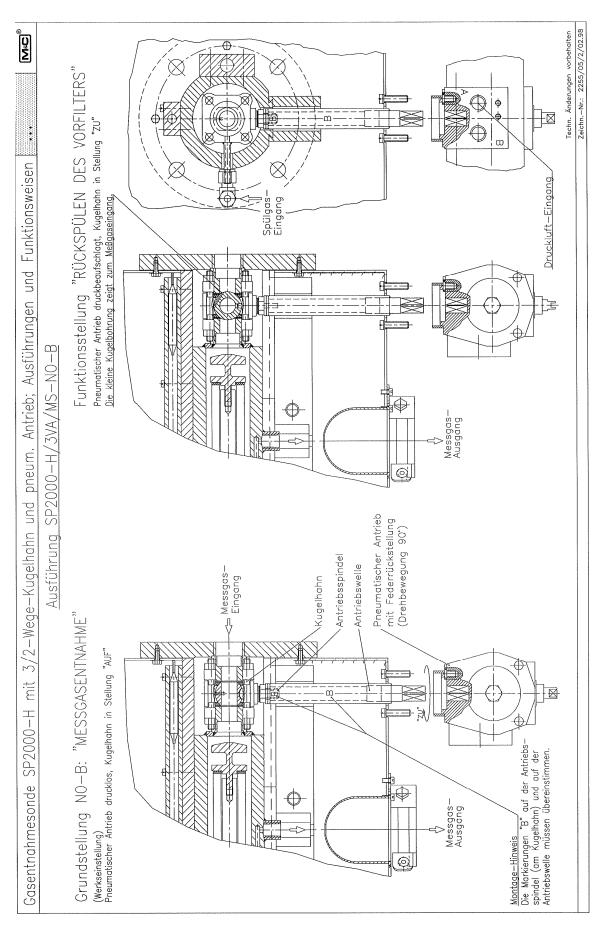


Abbildung 33 SP2000-H/3VA/MS-NO-B

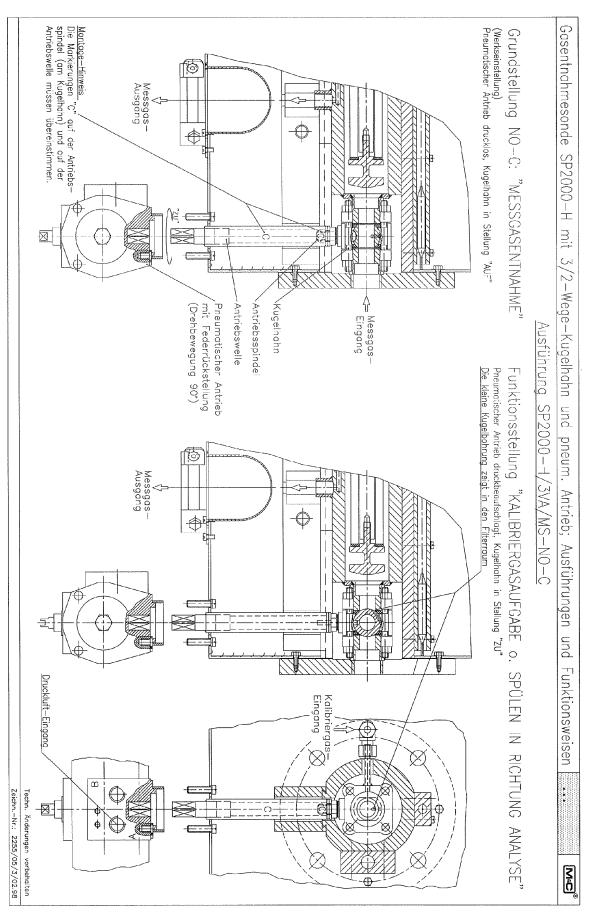


Abbildung 34 SP2000-H/3VA/MS-NO-C